KU LEUVEN
FACULTY OF ECONOMICS AND BUSINESS

The Organizational impact
of Low-code/No-Code on
Agile Development Teams

Haikal Fikri

R0866511

Thesis submitted to obtain the degree of
MASTER OF BUSINESS ADMINISTRATION

Business Information Management

Promoter: Prof. Dr. Yves Wautelet
Academic year 2024-2025

KU LEUVEN

FACULTY OF ECONOMICS AND BUSINESS

The Organisational
Impact of Low-Code/No-
Code on Agile
Development Teams

How does the use of Low-code/No-code platforms
impact Agile development teams?

This research investigates the impact of Low-Code/No-Code (LCNC) platforms on
Agile development teams, addressing a gap in existing literature that has primarily
examined these technologies in isolation. Through semi-structured interviews with
eight industry practitioners experienced in both LCNC platforms and Agile
methodologies, this qualitative study explores how LCNC adoption affects team
performance and dynamics within Scrum frameworks.

The study demonstrates that while LCNC platforms align well with Agile principles of
rapid iteration and customer collaboration, their impact is highly context-dependent,
varying with project complexity, team maturity, and management processes. These
findings have practical implications for organizations considering LCNC adoption within
their Agile frameworks, suggesting the need for careful consideration of project
suitability and project management processes to maximize benefits.

Acknowledgements

| would like to thank Prof. Dr. Yves Wautelet, my promoter, for his guidance
throughout this thesis and for his instruction in the program's course

modules, which provided essential knowledge for this research.

| also thank Prof. Stephan Poelmans for his course modules that contributed
to my understanding of the subject matter and facilitated the completion of

this thesis.

| am grateful to my parents for funding my master's program and making

this educational opportunity possible.

Thank you to all interview participants who contributed their time and
expertise to this research: Miguel Baltazar, Dennis Cardinaels, Metin Ferati,
Prof. Malgorzata Pankowska, Charlie Jessop, Mario Cunha, Oubaida Ben
Yaacoub, and those who preferred to remain anonymous. Their insights

were essential to this study.

Table of contents’

LIST OF ABBREVIATIONS.......ccu ittt iiissiessis e rssssssss s sssnssssssterssnsssssssessnnsssssssaennnssnns 2
1 INTRODUCGTION ..ot ittt i iessssssssiresssssssssersssssssssseesnssssssssmasnsssssssessnnnssnssnnns 3
2 LITERATURE REVIEW........oi it iessssssssessssssssss s ssssnssssssassnsnsssssenssnnssnsnsens 4
2.1 LOW-CODE/NO-CODE PLATFORMSeieeteeeeeeieeeee e e e e et e e e e e e eeeee e e e e e e e e e eeeenaans 4
2.2 ATAND LCNC .ot 5
2.3 LCNC IMPACT ON TECHNICAL DEBT ... oot 6
2.4 AGILE METHODOLOGIES ...t e e e e e e e e e e e e e e e e ee e e e eaennann 6
2.5 SORUM ..ottt e e e e e e e et e e e e e e e e e e e e s 7
2.5:1 TRE SCIUM PrOCESS ...t 7
2.5.2 Measuring Performance in SCrum teamscccooeoeeiooiescieesia e 9

2.6 IMPLICATIONS OF LCNC PLATFORMS ON AGILE METHODSuieeeiieieeeeeeeeeeeeeeens 12

3 RESEARCH METHODOLOGYciiiiiieiiiiiiieeessiiiissssssssiisssnsssssssesssnsssssssessnssssssens 15
3.1 INTERVIEW DESIGN ...ttt et e e e e et e e e e e e aaaes 16
3.2 INTERVIEW PARTICIPANTS SELECTIONiiiitieeeiieeee e e e e e e e e e e e e e e eeaaeeaes 18
3.3 DATA COLLECTION AND ANALYSIS ... it e et e e e e e e e e e e e e eneeaeeaaenann 18
3.3.1 Building a Transcriber Web App with LCNC.............cccoovvveevciieaaeisiiieaaaas 19

4 DISCUSSION ...t iiiriesa s iirresssss s e rsssssss e asnsssss s e aaanssssssressnnssssssnesnnnsssnnns 22
41 SOFTWARE QUALITY & MAINTAINABILITY ...t eeeeeee e e e e e e e e e 22
4.2 COMMUNICATION & COLLABORATIONeeteieetee eeeaanns 23
4.3 DELIVERY SPEED & WORKFLOW EFFICIENCYcvuueiieiiieeee e 23
4.4 ROLE & RESPONSIBILITY CHANGESottt e e e e e e e e e e e aaenan 24
4.5 ALINTEGRATION INLCNC ... 25

5 CONCLUSION ...t i rresmss e rsssss s s e s sssssssseraanssssssseasnsssssssseasnnsssnsseennnn 26
6 REFERENCGCEScootie ittt iiiisssssss e rsssssss e asnsssss s s assnsssssssesnnnssssssresnnnsssnnns 28

' This document might contain texts from earlier submitted documents within the same educational
programme, related to the Master’s Thesis process of the same author as the author of this
work.

1I

Copyright Information:

This is a student paper as part of an academic
education and examination. No correction was
made after the examination.

List of Abbreviations

Abbreviation

Full Form

Al
BDD
CLI
ERP
EU
HR
loT

LCNC
LeSS
MBA
PO
RQ
SAFe
SAP
SDLC
SM
TDD
UML
XP

Artificial Intelligence
Behavior-Driven Development
Command Line Interface
Enterprise Resource Planning
European Union

Human Resources

Internet of Things

Information Technology
Low-Code/No-Code

Large-scale Scrum

Master of Business Administration
Product Owner

Research Question

Scaled Agile Framework
Systems, Applications & Products
Software Development Life Cycle
Scrum Master

Test-Driven Development

Unified Modeling Language
eXtreme Programming

Note: This list includes abbreviations found in the main body of the thesis (Chapters 1-5),
excluding those appearing only in appendices and references.

1 Introduction

Over the last few years, countries in the European Union (EU) have been facing a labor
shortage of skilled digital professionals (Aksenova et al., 2024). Citizen development could
address such shortages (Hoogsteen and Borgman, 2022). The creation of business
applications by individuals without an IT background is commonly known in the literature
as citizen development (Hoogsteen and Borgman 2022). The citizen development
phenomenon can be attributed to the emergence and adoption of low-code/no-code
platforms (Hoogsteen and Borgman, 2022). Low-code/no-code (LCNC) platforms enhance
the firm’s business agility as it mitigates developer shortages by minimizing dependencies
with dedicated IT professionals (Khalajzadeh and Grundy, 2025). While shortage of skilled
IT labour is a concerning issue, the use of LCNC platforms may also result in possible cost
reductions as development teams are downsized and replaced with automation (Golov and
Myl'nik, 2023).

The use of IT is increasingly expanding across various business functions (Promegger et
al., 2021). The role of IT is increasingly becoming more strategic in businesses and
organisations (Alt et al., 2020) and digital transformation of organisations will only intensify
in the coming years (Alt et al., 2020). Low-code platforms will foreseeably amplify the digital
transformation process of organisations in the coming years (Vincent et al., 2019). Golov
and MyI’'nika (2023) reported that 90 percent of time can be saved in digital transformation
projects by utilising LCNC. Furthermore, LCNC platforms can reduce the barrier for
innovation through user-driven creativity, thus creating value for the business (Callinan and
Perry, 2024).

Combining Low-code/no-code (LCNC) approach with Agile methodologies can result in
efficiency gains for businesses (Hanson, 2024). The citizen development promotes the
agility of a company given limited resources (Callinan and Perry, 2024). Agile
methodologies have been gaining popularity in the world of software development in the
recent years (Edison et al., 2022). Agile methods focus on iterations and testing, has less
of a procedural approach (Thesing and Feldmann, 2020) and is more flexible compared to
other project management methods (Lutwama et al., 2024). Scrum, eXtreme Programming
(XP) and Kanban are three of the most common agile frameworks (Lutwama et al., 2024).
Agile methods have been found to increase customer satisfaction (Putta et al., 2018) as
well as employee satisfaction (Stettina et al., 2021). While there are multiple research
materials addressing the benefits of adopting LCNC development and the benefits of
adopting Agile methods, little research have been done to assess the impact of LCNC
development on Agile development teams. This research aims to address that gap and find

the effect of LCNC development on agile development teams.

2 Literature Review

To study how LCNC development impacts agile teams, a review of relevant existing
literature study and related works is carried out. This section addresses first the LCNC
development followed by Agile Methods before finally addressing the relationship of LCNC
and Agile.

2.1 Low-code/No-code platforms

Low-code applications can be used in different business purposes in different industry
settings (Phalake et al.,2023). LCNC development makes business process automation
easier and less complex (Luo et al., 2021). Picek (2023) illustrated several use cases of
applications made with LCNC development in the field of enterprise resource management
(ERP). Zielinski (2021) wrote about how employees of a company’s human resource (HR)
department utilised LCNC development to build an application that streamlines HR-related
work. In China, a growing number of companies are adopting the LCNC approach to
develop enterprise resource management (ERP) applications (Tang, 2021). Kalaivani et al.
(2024) utilised both LCNC development and Agile methods to develop a visitor
management application for a hospital. LCNC development can make it easier for people
to create applications for Internet of Things (loT) devices (Chen et al., 2022). From an
organisational perspective, LCNC is bound to change the roles and responsibilities of
employees, organisational culture (ClO, 2023), and decision-making processes (Bock and
Frank, 2021).

As of 2020, there are over 200 Low-Code/No-Code platforms available in the market
(Sahay et al., 2020). Microsoft Power Apps, Mendix and OutSystems are the current
leaders of LCNC development platforms (Matvitskyy et al., 2024). Low code platforms are
defined as platforms designed to facilitate fast application development, deployment,
execution, and management (Vincent et al., 2020). Low code/no code platforms is
characterised by its model-driven or visual development approach without the need for prior
computer programming knowledge (Ang, 2021). This means users can easily build digital
products by dragging and dropping components with little to no need of coding (Woo,
2020). The adoption of low-code/no-code platforms by companies is driven by enhanced
software development efficiency, lower barriers to application creation and faster time to
market (Kass et al., 2022). Developer shortages is also one of the factors of LCNC adoption
(Guthardt et. al, 2024). Businesses can save on development costs as lesser resources
are being used when they adopt LCNC solutions to develop a product (Jaglan and

Upadhay, 2022). LCNC platforms have the potential to substantially shorten the software

development lifecycle (SDLC) (Bhattacharyya and Kumar, 2023) therefore minimising
costs (Sanchis et al., 2020; Rokis and Kirikova, 2023).

Applications made with LCNC platforms can perform as well as those made traditionally
with code (Guthardt et al., 20) and are easier to maintain (Rokis and Kirikova, 2023). Java
and Javascript are two of the most common language used in LCNC development (Luo et
al., 2021). LCNC platforms have made it easier for applications to scale and for developers
to fix bugs found on the application product (Sahay et al., 2020). However, it is reported
that LCNC platforms that are used to build the application itself can be buggy at times
especially when designing applications (Liu et al., 2024). Applications developed by LCNC
platforms may also have security vulnerabilities and performance issues (Woo, 2020;
Ramesh and Divya, 2024; Hurlburt, 2021). The lack of proper documentation processes is
one of the reasons why businesses avoid building applications with LCNC approach (Kass
et al., 2023). LCNC platforms lack interoperability as standards and conventions differ
depending on the platform developer, hence leading to vendor lock-in for end users of the
platforms (Sahay et al., 2020). In addition to that, privacy concerns regarding data and
intellectual property rights are also possible areas of concerns for end users of LCNC
platforms (Wolff, 2019). While LCNC development reduces complexity in building web and
mobile applications, there still exist a relatively steep learning curve in using LCNC
platforms (Luo et al., 2021). Kandaurova (2024) found that LCNC platform users still need

to have a basic knowledge in code to make a functioning application.

2.2 Aland LCNC

The current research landscape regarding the use of Al in LCNC development is currently
limited while there is growing interest among businesses (Kandaurova, 2024).
Incorporating Al into LCNC platforms enhances business agility by enabling real-time, data-
driven decision-making (Kok et al., 2024). LCNC platform vendors have started integrating
Artificial Intelligence (Al) features that assists builders in making their applications (Woo,
2020). The use of Al prompt engineering to model web and mobile applications can result
in LCNC platforms into “true no-code platforms’ allowing for faster iterations for Agile teams
(Hagel et al., 2024). ChatGPT’s large language model can generate boilerplate code
templates to build applications (Martins et al., 2023). Integrating Al and LCNC approach

can ensure adherence to standardization and best practices (Martins et al., 2023).

2.3 LCNC impact on Technical Debt

Schmidt’'s (2016) found that software quality is a determinant of the performance of Agile
development teams. This can be be related to the concept of technical debt. Technical debt
refers to the backlog of work that development teams accumulate on a product when they
take shortcuts during the development process prioritising speed for product delivery
(Pavlic et al., 2022). It is clear how the LCNC approach makes it easier for applications and
digital products to be developed. While LCNC development can reduce technical debt as
there are less poorly written code when building applications (CIO, 2023), Havelund and
Steffen (2021) along with Lethbridge (2021) argued that LCNC approach will lead to more
technical debt as the LCNC approach lacks functionalities that facilitate the standard
industry processes for software engineering such as version control. LCNC development
can result in code that are too complicated which adversely impacts technical debt
(Lethbridge, 2021; Havelund and Steffen, 2021) as it is harder to document and be
reutilised for future use (Lethbridge, 2021). From a management perspective, technical
debt can be reduced if enterprise architects simultaneously assume the role of product
owner in agile settings (CIO, 2024). It is still not clear yet how the citizen developer trend
that companies are adopting have an impact on technical debt (Barkin and Davenport,
2023).

2.4 Agile Methodologies

The agile methodology which was designed for software development is very much related
to the principles and concept of lean that was originally meant for manufacturing processes
(Babik, 2018). Agile Development is one of the most favoured methodologies of software
development in the twenty-first century because of its adaptability in fast-changing
environments where requirements change rapidly (Al-zewari et al, 2017). Agile
methodologies emphasize iterative development and continuous improvements, taking a
less rigid, procedural approach (Thesing & Feldmann, 2020) and offering greater flexibility

than traditional project management methods such as Waterfall (Lutwama et al., 2024).

Agile methodologies are widely adopted in the tech industry because it has been proven to
speed up the product’s time to market in dynamic environments where requirements
change at a fast rate (Papatheochaorus and Andreou, 2014). In its essence, the Agile
model focuses on collaborative interaction (Babik, 2018) and continuously incorporating
stakeholder feedback, particularly from customers, through small but frequent product
release and iterative updates, which leads to continuous evaluation and refinement
(Maassen, 2018). It has been shown that using Agile methodologies positively impact an

organization’s overall performance especially in terms of productivity and employee

satisfaction (Stettina et al., 2021). Agile methodologies are not restricted to applications
only in the tech sector (Breyter, 2022). Business units can achieve business agility by
adopting agile into their workflow. Adopting agile practices improves in the business unit’s
capacity to respond rapidly to market shifts—staying efficient, customer-focused, and cost-

effective—while still maintaining high standards of quality (Breyter, 2022).

2.5 Scrum

2.5.1 The Scrum Process

Scrum is one of the widely used frameworks for the agile methodology (Maximini, 2018).
Scrum has a more dynamic, process-based, and flexible approach compared to eXtreme
Programming (XP) which focuses more on coding methods (Babik, 2018). Self-organizing
teams is a key feature of the agile scrum teams. Teams consists of members with a variety
of skills and specializations unlike conventional teams where individuals are grouped
according to their skill set (Bass, 2022).

The Product Owner and Scrum Master are the leading roles of the scrum team along with
architects, developers, technical writers, and quality managers (Babik, 2018). Schmidt
(2016) on the other hand suggested further that the development teams should not have
other specialist roles than programmers and that these programmers should have

necessary skills to make the team as cross-functional, lean, and flexible as possible.

The Product Owner (PO) acts as the customer’s proxy on the team, articulating their needs,
managing and organising the team’s objectives for the upcoming Sprint, and ensuring that
the work delivers real value to the customer (Schmidt, 2016; Kelly, 2019; Noll et al., 2017).
The Scrum Master (SM) serves as a facilitator and coordinator who upholds the Scrum
processes and removes any obstacles that could prevent the team from working effectively
(Schmidt, 2016; Shastri et al., 2021; Noll et al., 2017). While the function and title of project
manager is non-existent in Scrum, Shasri et al. (2021) proposed that the Scrum master
acts and functions as the de-facto project manager in Scrum teams. The Scrum master
facilitates Scrum ceremonies such as the sprint planning, sprint review and daily standups
(Noll et al., 2017).

Figure 1

Scrum process diagram (Schmidt, 2016)

Scrum Team
Scrum Dail
Master ally
Scrum
Product
Owner
1 Developers
Sprint Software
2 (2-4 weeks) increments
3 =
4 i Sprint Sprint
Planning Review
Product Sprint Retro-
backlog backlog spective

Note. Adapted from Agile software development teams: The impact of agile development on team performance
(p. 17), by C. Schmidt, 2016, Springer. © 2016 Springer.

The scrum essentially method breaks down the project into more workable smaller iterative
increments called sprints (Babik, 2018), in which developers are given the autonomy to
plan and manage the tasks assigned prior in sprint planning (Schwaber and Sutherland,
2020). Product features are defined by the product owner in the product backlog and are
called epics. Epics are further decomposed into user stories; a technology agnostic
description written from the point of view of the user (Bass, 2022). User stories includes

sub-tasks for the developers to work on (Breyter 2022).

Figure 2

Product Backlog hierarchy (Breyter, 2022)

Product Backlog

Note. Adapted from Agile product and project management: A step-by-step guide to building the right products
right (p. 117), by M. Breyter, 2022, Apress. © 2022 Apress.

The work defined in the product backlog is further distributed and decomposed in the sprint
backlog for each sprint iteration, which lasts for two to four weeks (Tal, 2015). Before each
sprint, a sprint planning meeting is organised to organise the deliverables for the upcoming
sprint (Tal, 2015). During sprint planning, the team selects which product-backlog stories
can be completed in the upcoming sprint by considering their velocity, available capacity,
and the estimated effort for each story (Noll et al., 2017). Kanban is a commonly utilised
tool to track and manage the work items and user stories (Breyter, 2022). Daily meetings
facilitated and coordinated by the scrum master are held during each sprint to update each
other daily on the work done (Babaian, 2019). At the end of each sprint, the team convenes
once again for a Sprint retrospective meeting where performance is reviewed (Tal, 2015).
s and bugs found after each sprint are listed as working items to be worked on again in

upcoming sprints by team members responsible for quality assurance (Tal, 2015).

2.5.2 Measuring Performance in Scrum teams

Figure 3

Hypothetical Burndown chart of an Agile Project (Al-Generated, 2025)

Burndown Chart: Actual Lines Touching Zero at End

30
Ideal Tasks Remaining
—— Actual - Delayed
251 —— Actual - Accelerated
3
_‘g 201
8
¥ 151
©
G
€ 10
]
5 -
%.O 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Iteration Timeline (days)

Team performance is perceived to be the most important metrics in an agile project and
velocity is one of the determining factors (Almeida & Carneiro, 2023). However, velocity as
a metric is not very reliable unless combined with cycle and lead time metrics (Almeida &
Carneiro, 2023). In each Scrum project, a burndown chart is used to measure the progress
of work done (Tal, 2015). The x-axis shows the time in calendar days and the y-axis shows
the amount of work done. A negative-sloping straight linear line called the burndown line is
drawn as a reference for the ideal work velocity, with flat lines representing weekends or
days where no work is expected to be done (Breyter, 2022; Tal, 2015). The actual progress
line is drawn as the days pass, by subtracting the amount of work done, and is not

necessarily linear (Breyter, 2022). If the team completes tasks faster than expected, then

the actual progress line would appear lower than the reference line and if the team
completes tasks slower than expected, the progress line would appear higher than the
reference line. This is shown in Figure 3. In addition to the burndown chart that measures
progress in terms of work velocity, lead time and cycle time is measured (Breyter, 2022).
When using Kanban, lead time is the time measured from the inception of a user story fill
its completion whereas the cycle time is the time measured from the point the user story is
worked on till its completion. Both lead time and cycle time of user stories can be averaged
out to serve as additional metrics for team performance.

Figure 4
Lead & cycle times (Breyter, 2022)

Cycle Time

Note. Adapted from Agile product and project management: A step-by-step guide to building the right products
right (p. 199), by M. Breyter, 2022, Apress. © 2022 Apress.

Schmidt (2016) investigated the impact of Agile on development teams in SAP SE with
empirical methods. In his research that was compiled into a book, team performance was
broken down into several dimensions, namely: internal and external software quality, which
is categorised as outcome-oriented performance, in addition to progress, predictability, and
transparency, which are categorised as process-oriented performance (Schmidt, 2016). Of
these dimensions, progress, software quality and transparency are statistically significant
(Schmidt, 2016). The progress dimension is determined by velocity and speed of work. The
transparency dimension is determined by external and internal communication of teams
(Schmidt, 2016). Software quality is determined by code reusability and maintainability,
stakeholder satisfaction, and the conformity and compliance of the software to the client’s

requirements and requested functionalities (Schmidt, 2016).

Software maintenance is formally defined as making changes to software after it has been
delivered, with the goal of fixing bugs, enhancing performance or other features, or
adjusting the software to work in changed conditions. Maintainability describes how easily

and efficiently these maintenance tasks can be performed (Jain et al., 2018). Lopez et al
(2022) further emphasised that maintainability, reliability and efficiency are important

factors that contribute to software quality in the context of agile and rapid development.

Figure 5

Schmidt (2016) proposed dimensions of performance.

Overall
Team Performance

Internal External
Software Software Progress Predictability Transparency
Quality Quality

Outcome-oriented Process-oriented

Note. Adapted from Agile software development teams: The impact of agile development on team performance
(p- 93), by C. Schmidt, 2016, Springer. © 2016 Springer.

2.4.3 Evolution of scrum

Scrum serves as a base for many of the scaled agile frameworks as shown in Table 1
(Breyter, 2022). The Scrum method was originally designed for smaller teams and has
gone through evolutions for larger scale applications in organisations and projects resulting
in new frameworks such as the Large-scale Scrum (LeSS), the Scaled Agile Framework
(SAFe) and the Spotify Method (Uludag et al., 2021). The concept of ‘scrum of scrums’ is
a key feature of LeSS, in which a team consisting of the area scrum master's and area
product owners of individual scrum teams working on a larger goal or product is formed
(Bass, 2022). In addition to that, new roles and teams are introduced to assist with the
coordination between the business and technical sides such as the Governor and Product
Manager for LeSS (Bass, 2022), and the Release Train Engineer and Portfolio teams for
SAFe (Putta et al., 2018).

Table 1

Scaled Agile Frameworks (Breyter, 2022)

Type and size of the Methods and Specifies Establishes a Professional
organization practices portfolio collaborative association that
adopted management dependency endorsed the
and business management framework
prioritization mechanism
Scaled Agile 50-124 people in an Scrum, Kanban, In detail: Lean Advanced Scaled Agile
Framework (SAFe) Agile Release Train, Lean, DevOps, XP portfolio dependency Academy
scaling indefinitely ~ Practices management and management
business starting with long-

Large-Scale Scrum
(LeSS)

Disciplined Agile
Delivery (DAD)

Spotify Scaling
Model

Scrum@Scale

Nexus

LeSS Huge allowed
for thousands of
people

200 people or more

Around 300 people

No limitations
imposed; successes
limited to several
hundred

Three to nine Scrum
teams

Scrum primarily

Full toolbox:
Scrum, Agile
modelling, Unified
Process, XP,
TDD, Agile

Allows the team to
choose any Agile
framework

Scrum

Scrum

prioritization based
on Value Stream
Mapping (VSM)

By scaling product
management

Focuses on
technical practices

Via Tribe-specific

accountability and
the role of product
management

Product Owner
collaboration

Product Owner
collaboration

term planning

Via structured
ongoing
collaboration

Via collaboration

Organic

Via Scrum of
Scrums

Advanced
dependency
management via
Integration Team

LeSS practitioner
groups

Project
Management
Institute

N/A

Agile Alliance

Scrum Alliance

Note. Adapted from Agile product and project management: A step-by-step guide to building the right products right (p.
255 — p. 256), by M. Breyter, 2022, Apress. © 2022 Apress.

2.6

Implications of LCNC platforms on Agile methods

Rokis and Kirikova (2022) found that the principles of agile methods are compatible with

the essence of LCNC development. Integrating low-code/no-code (LCNC) with Agile

methodologies enhances efficiency and adaptability for businesses (Hanson, 2024).

Combining Low-code/no-code development (LCNC) and Agile methodologies like Scrum

can significantly accelerate application development while enhancing an organization’s

efficiency, quality, and speed, thus leading to success (Abdul Razak et al., 2024). In a study

by Lebens and Finnegan (2021), LCNC platforms is proven to be a useful tool to teach

university students agile methods. Kalaivani et al. (2024) found that Agile methods are

useful as a project management tool when developing a healthcare application with a low-
code/no-code platform. The roles in agile team would be even more dynamic and cross-
functional with LCNC development (Elshan et al., 2024). Product owners must adapt to the
faster software development cycles (Elshan et al., 2024). To study the impact of LCNC
development on Agile methods, it is useful to draw parallels between the findings of existing

literature with some of the twelve principles of Agile.

Maintaining simplicity by reducing complexities in both processes and the actual software
product itself is a key principle of Agile Manifesto (Agile Alliance, n.d). LCNC platforms
simplify the complex process of conventional coding (Kass et al., 2022), enabling users to
streamline workflows and accelerate the software development process (Picek, 2023)
Collaboration between businesspeople and developers is another driving principle behind
the Agile Manifesto (Agile Alliance n.d). The use of LCNC platforms in developing software
applications promotes collaboration between IT and business teams (Tang, 2022),
streamlining Agile development workflows (Appian Corporation, 2019). Making software
development more accessible through LCNC platforms fosters collaboration across
departments, driving innovation by reducing the burden on dedicated IT teams and thus
accelerating the development process (Ramesh and Divya, 2024). LCNC platforms
empower business users to create applications with lesser dependence from dedicated IT
specialists, thus minimising workload (Kass et al., 2023; Matook et al., 2025). In short,
LCNC development unites business and technology as it aligns with the principles of agile
(Tang, 2021).

Keeping customers satisfied by incrementally delivering useable software products early
and consistently with speed and frequency are the principles behind Agile Manifesto (Agile
Alliance, n.d). Low-code/no-code platforms align well with Agile methodology, as iterative
development and frequent delivery is prioritized (Razak et al., 2024). Low-code
development enables rapid prototyping and development of products, allowing developers
to assess customer needs and validate ideas before allocating resources to product
features that may hold little value (Sanchis et al, 2020). Being flexible with changing
requirements from customers is one of the principles of Agile (Agile Alliance n.d). Low-code
platforms enable developers to adapt to changing requirements as they are able modify
applications in response to evolving processes and requirements, incorporating user
feedback for continuous improvement faster (Wolff, 2019). Since developers can work
rapidly on iterations based on feedback, this can reduce requirement inconsistencies
(Alamin et al.,2023). The LCNC development approach is more agile compared to
conventional approach as developers are dealing less with complicated code (Shridhar and
Bose, 2021). Hence adopting the LCNC approach will improve customer satisfaction (Rokis
and Kirikova, 2022).

However, it has also been reported that LCNC development may pose some challenges in
Agile teams. Conflicts between business users and IT teams over control and governance
may happen in LCNC development, thus hindering Agile collaboration (Khalajzadeh and
Grundy, 2025). Utilizing low-code and no-code tools could result in reduced control over
security and governance (Wagas et al., 2024). Thus, a unified IT strategy and governance

framework is essential to resolve such issues (Ajimati et al., 2025).

3 Research Methodology

While there has been multiple research that focuses on LCNC development and Agile
methods individually, there has been limited studies on how both concepts impact and
interact with each other. This qualitative study aims to address that gap by studying the
impact of LCNC approaches on agile development teams through interviews with
practitioners and relevant industry experts. The following research question formulated
below must be answered to study the organisational impact of LCNC on agile development

teams:

RQ1: How does the use of Low-code/No-code platforms impact Agile development

teams?

To analyse how the use of LCNC platforms impact Agile development teams, performance
and team dynamics are two overarching factors that needs to be investigated. To assess
the impact of LCNC on team performance, this research will use only the statistically
significant dimensions of Agile team performance that was proposed by Schmidt (2016).
Therefore, software quality, progress and transparency are used to assess the impact of
LCNC on team performance. To assess the impact of LCNC on team dynamics, the
changes in team roles, working style, and working processes resulted by the use of LCNC
platforms will be investigated. Of all the existing Agile frameworks, only Scrum will be
considered in this research as it is the most prevalent and widely used framework in
practice. Such consideration is made because Scrum is the basis for many of the scaled

frameworks as reported by Breyter (2022).

Figure 6

UML use-case goal diagram of research

Analyse Impact of LCNC on Agi
t
'

- <<Include>> ------Lt--------- <<Include>> ---,

| I
| |
Assess impact on team Assess impact on team
performance dynamics

I
~~~~~~~~~~~~~~~~~~

************* T ]



3.1 Interview Design

The interviews follow a realist ontology with a neo-positivism epistemology approach with
the following research objectives that will answer the research question:
1. Investigate the effect of LCNC approach on team performance with software
quality, progress, and transparency as metrics.
2. Investigate the possible changes in team dynamics in terms of roles, working style,

and working processes caused by the adaptation of LCNC approach.

The interviews are semi-structured and exploratory with questions that covers the two
overarching factors that determine the impact of LCNC on Agile development teams.
Respondents are selected through non-probability sampling, specifically with purposive
sampling based on relevance to the research topic. Interviewees are chosen through
personal network connections and Linkedln based on two main criterions. Firstly, their
professional experience in the area of LCNC. This can be employees of LCNC platform
vendors and external consultants or persons who are users of the platforms. Secondly,
their familiarity with Agile frameworks. Ideally, the interviewee should have a professional
Agile certification, however, the minimum is that they should be at least exposed to the
Agile working environment sometime in their career. Appendix 1 lists the relevant
background information of all interviewees. Table 2 below describes the interview
questions related to background that are asked in the beginning followed by table 3 where
the questions pertaining to the dimensions that the overarching factors depend on are

listed.
Table 2

Introduction Questions

No. Question

1 Please introduce yourself.

2 Briefly explain your working experience.

3 Which agile framework are you most familiar with?

4 Which LCNC platform are you familiar with?




Table 3

Interview Questions

Factor Dimension Question

Performance Software Quality How does LCNC affect the team’s defect rate per sprint and what evidence links
any observed increase or decrease directly to the LCNC implementation?

Software Quality ~ On a scale of 1 (very low) to 7 (very high), how would you rate the maintainability of
LCNC deliverables compared to traditional code? Please explain the rationale
behind your rating with a recent example.

Performance  Transparency On 1 (very difficult) to 7 (very easy), how smooth is cross-member coordination

(Internal when working with LCNC platforms? Can you illustrate a recent example?
Communication)

Transparency On 1 (slow/infrequent) to 7 (rapid/frequent), how would you rate the pace of
(External stakeholder feedback when delivering work made with LCNC development? Please
Communication) explain the rationale behind your rating.

Performance Progress How has adopting LCNC shifted your team’s actual burndown line relative to the
ideal trajectory—indicating overall acceleration or deceleration of work—and what
project-level observations support that pattern?

Progress How can the adoption of LCNC impact the cycle time and lead time? Can you
provide a reason or an example behind your answer?

Team Changes in How has adopting LCNC influenced the composition and number of roles on

Dynamics Roles development teams—specifically, which new LCNC-oriented roles have emerged,
and which traditional scrum/agile roles have diminished—and can you illustrate
these shifts with concrete examples and use cases?

Changes in How has adopting LCNC shifted the hands-on responsibilities of product owners—
Roles specifically, have they taken on more configuration or design work—and can you
illustrate that change with a concrete use-case or example?

Team Changes in How has LCNC adoption affected the coordination and facilitation duties of the

Dynamics working style Scrum master, and can you share a real project scenario that demonstrates the
change?

Changes in How has LCNC adoption changed your backlog prioritisation process, and can you
working style share a specific example where LCNC led you to reprioritise an item?

Team Impact of Gen Al How would the emergence of generative Al impact LCNC approach and Agile

Dynamics altogether?




3.2 Interview Participants Selection

Table 4 below lists the eight interview participants who agreed to participate in this
research. A total of 80 people were approached on LinkedIn Sales Navigator. For this

” o«

research multiple search queries with the terms “Agile”, “Scrum” and the respective and
relevant LCNC platforms were executed. Prospects are screened and selected carefully
based on the criterion in § 3.1 by analysing their job position and experience, certifications
and skills listed on the individual profile page. An invitation message was then sent to
prospects who pass the screening process. In addition to that, personal connections and
referrals were used to approach some of the participants. In the end, only nine prospects
responded positively, of which only eight managed to successfully do the interview. Only
one out of the eight respondents chose to remain anonymous. All eight interview

participants indicated that scrum is the main methodology that they are most familiar with.

Table 4
Interview Participants
Name Job Experience LCNC Platform Experience
Miguel Baltazar VP Developers, OutSystems OutSystems
Dennis Tech Lead Capgemini Belgium Outsystems
Cardinaels
Metin Ferati Founder, N'’Katrori & Freelance Senior Wordpress, Replit, VO by Vercel, Cursor
developer
Prof. Malgorzata Professor, University of Economics WebCon
Pankowska Katowice
Charlie Jessop Solution Architect, Capgemini Belgium Outsystems
Anonymised Software Developer in Latvia Microsoft Power Apps
participant
Oubaida Ben Freelance Business Analyst/Product Owner  Microsoft Power Apps
Yaacoub
Mario Cunha Tech Lead, OutSystems Outsystems, Mendix

3.3 Data Collection and Analysis

The interview data collection was done fully online through Microsoft Teams over a period
of one month between July and August 2025. All participants have given their consent for
the interview to be recorded and transcribed. After transcription is done, thematic coding
analysis was performed. Table 4 shows the main themes that was identified from all the

interviews and description of the Appendix 1 to Appendix 8 is the transcripts for the eight



interviewees above. The full excel sheet that contains the main themes, child themes and

excerpts can be accessed in the drive link in Appendix 9.

Table 5

Thematic Codes

Theme Description

Software Quality & Covers defect rates, error types, governance issues, platform limitations, and
Maintainability ease/difficulty of maintaining LCNC deliverables.

Communication & Covers cross-member communication, stakeholder feedback loops, citizen
Collaboration developer interactions.

Delivery Speed & Workflow Covers delivery pace, quick wins, and changes in backlog prioritization due
Efficiency to LCNC.

Role & Responsibility Covers shifts in Product Owner responsibilities, Scrum Master, developer
Changes roles, hybrid positions and responsibilities.
Al Integration in LCNC Covers use of Al tools in LCNC development, Al-assisted coding,

Automation, perceived future impact.

3.3.1 Building a Transcriber Web App with LCNC

A custom web-based transcription application was developed using a combination of low-
code, and no-code tools to facilitate the transcription and analysis of qualitative interview
data for this study. The application was designed to transcribe the eight interviews
conducted with participants. The front end was made entirely through prompting with
Anthropic’s Claude Code command line interface (CLI) that was installed locally running
Claude Al's Opus 4 large language model (LLM). The backend was developed and
deployed using n8n, a low-code workflow automation platform, enabling seamless
integration between the application’s frontend, OpenAl’'s GPT-4 transcription LLM and

Google Docs.

Al-powered transcription was employed to reduce the time and manual effort required for
converting audio data into text while maintaining a high degree of accuracy. The application
was created to improve efficiency in processing large volumes of qualitative data and to
demonstrate the applicability of low-code/no-code platforms in practical research
scenarios, consistent with the study’s focus on their impact within Agile development

environments.



3.3.1.1 Build Process of Transcriber Web App

The application was designed with a workflow in which the frontend enables the upload of
interview recordings through a dedicated form. The form graphical user interface (GUI) was
coded in HTML with CSS styles applied and AJAX enabled. Upon upload and submission,
the data from the upload form is captured via a webhook, which initiates the backend
processing. This data is transmitted to an n8n development server, where it is routed to the
OpenAl integration node through an API connection. The integration with OpenAl’'s GPT-4
transcription model facilitates the automated transcription of the uploaded audio or video
files albeit with an upload limit of 25 Megabytes per file. As a result of that limitation, the
interview videos were converted to a low bitrate .mp3 file with Adobe Audition. Following
the Open Al transcription, a respond-webhook node is triggered to confirm the successful
execution of the process. Simultaneously, another node within the workflow appends the
transcribed text to a designated Google Docs file, ensuring that all interview data is
consolidated in a single document for analysis. This was made possible by connecting

Google’s API key with n8n.

3.3.1.2 Using the Transcriber Web App

This workflow was iteratively applied for all eight interviews, with each transcription
appended sequentially to the same document on Google Docs. The entire process was
configured and optimized within the low-code environment of n8n, leveraging its modular
node-based automation capabilities. Current development efforts are focused on
expanding the application’s functionality to include the ability to export transcriptions
directly as Microsoft Word documents, thereby enhancing its usability for qualitative
research documentation and deploying the app with Railway. Future development efforts
could include the addition of another Al node which would be able to re-check and edit the
transcription for mistakes through context and even generate a short summary of

transcripts.

Figure 7 shows the n8n workflow. Figure 8 and 9 show the simple HTML frontend coded
by Claude Opus 4 model. The time taken to build the prototype of the app was roughly
about 3 hours with significant amount of time taken to familiarise with n8n, given no prior
experience with the platform, and to troubleshoot APl connectivity issues of nodes.
OpenAl's Chatgpt 5 was additionally utilised to consult when troubleshooting issues. The
development cost incurred specifically for this prototype app in terms of APl usage and
platform usage totalled up to less than 5 dollars, excluding the overhead costs of n8n and

Claude Al licences.

20



Figure 7

n8n workflow

008 no
2
“ B
S+ =d B e
“ B
s |[w & Execute worktiom
8
aw
® o
@ e

Figure 8

Frontend GUI form

ool

Audio Transcription Upload

Seloct your audiofle

Figure 9

Frontend GUI form upon submission

oo

Audio Transcription Upload

ranscrbed.

21



4 Discussion

In this section, each thematic area listed in Table 5 identified through the analysis of
interview data will be examined in detail, comparing the empirical findings with existing
literature and theoretical frameworks. The analysis of interview data revealed five main
thematic areas that characterize the impact of LCNC on Agile teams: software quality and
maintainability, communication and collaboration, delivery speed and workflow efficiency,
role and responsibility changes, and the emerging influence of Al integration. These
themes align with and extend Schmidt's (2016) performance dimensions framework, while
revealing nuanced effects that vary significantly based on project complexity, team

maturity, and organizational context.

4.1 Software Quality & Maintainability

Defects to a software can be used to determine the quality of the end-product. Defects can
appear because of developer error or in the case of LCNC approach, because of the
platform. Defects essentially creates more work for the Agile team and its accumulation in
the subsequent Sprint backlog could lead eventually delays in the overall project, which will
reflect in a burndown line going above the ideal trajectory. Based on the interview data
analysis, it can be concluded that LCNC approach will result in a lower defect rate to a
limited extent. Defects related to frontend and syntax can decrease because of LCNC
(Ferati, personal communication, 2025; Anonymous Participant, personal communication,
2025; Baltazar, personal communication, 2025), however the defect rate is very much still
highly dependent on the skill level of developer and/or developing team themselves and
the platform itself (Cunha, personal communication, 2025; Anonymous Participant,
personal communication, 2025; Ferati, personal communication, 2025; Jessop, personal
communication, 2025). Rectifying or fixing a defect can be much faster with LCNC
compared to traditional development approach (Jessop, 2025; Anonymous Participant,
2025; Cunha, 2025).

Maintainability among other things define software quality (Kanellopoulos & Yu, 2015;
Lopez et al., 2022). In this research, interviewees were asked to rate the maintainability
from one to seven with one being low and seven being high. The term maintainability must
not be conflated with maintenance. Interviewees were made clear beforehand that high
maintainability in this research context means that the end software is easier to maintain
(vis-a-vis low maintenance) with LCNC approach. Majority of the respondents indicated

that software made with LCNC is generally easier to maintain, thus high maintainability.

22



However, vendor lock in issue and platform limitations may be a hindering issue when it
comes to maintainability especially with more customised software (Anonymous
Participant, personal communication, 2025). High overhead costs may also affect

maintainability from a financial standpoint (Jessop, personal communication, 2025).

4.2 Communication & Collaboration

Transparency, as reported by Schmidt (2016), relies on internal and external
communication, and affects the team performance. Majority of the respondents indicated
that LCNC has a positive effect in external communications with stakeholders as they can
deliver iterations at a faster speed with LCNC. This can also be attributed to the citizen
development phenomenon where non-technical stakeholders are able to contribute to the

development process (Anonymous Participant, personal communication, 2025).

In terms of internal communications between cross members however, respondents have
mixed perceptions. Respondents with a strong background in traditional approach (Ferati,
personal communication, 2025; Jessop, personal communication, 2025) gave lower
ratings. The lack of version control features in LCNC platforms makes internal
communication worse than traditional approaches (Jessop, 2025) and that the inclusion of
citizen developers may affect internal communication negatively if citizen developers lack
technical skills (Ferati, 2025). Respondents also shared that teams tend to be a lot smaller
in LCNC projects, therefore streamlining internal communications (Ben Yaacoub, personal

communication, 2025; Baltazar, personal communication, 2025).

4.3 Delivery Speed & Workflow Efficiency

Previous literatures have stated that combining LCNC with agile will accelerate project
delivery (Razak et al., 2024; Picek, 2023) as developers are able to work more efficiently
(Sanchis et al, 2020). As demonstrated in § 3.3.1 and stated by a respondent (Ben
Yaacoub, personal communication, 2025), developers using LCNC approaches can deliver
a minimum viable product faster as LCNC solutions make it easier for them to develop
applications. While most respondents agree that teams can work faster and deliver
iterations at a rapid rate with LCNC approaches compared to traditional approaches
reflected through the positive response on lead and cycle times, many have mixed
reactions when asked about the overall progress and time taken to complete and deliver
the entire agile project.

23



Overall progress can be measured by the burndown line - a line that is below the ideal
trajectory means an acceleration of work, whereby one that is above means a deceleration
of work. Respondents indicated that there are other variables in play that will affect the
acceleration and deceleration of the project delivery. With LCNC approaches, developers
can work more efficient at a faster rate (Cardinaels, personal communication, 2025; Cunha,
personal communication, 2025; Baltazar, personal communication, 2025; Jessop, personal
communication, 2025), however bottlenecks may appear at other stages of the project and
requirements may change, thus, slowing down progress (Cardinaels, personal
communication, 2025; Baltazar, personal communication, 2025). The accelerating factor
attributed to the use of LCNC may also be diminished when the project is more complex
(Jessop, personal communication, 2025; Cunha, personal communication, 2025;

Pankowska, personal communication, 2025).

4.4 Role & Responsibility Changes

Self-organising and cross functional team roles are one of the features of Agile
development teams (Bass, 2022). LCNC platforms have given rise to the citizen
development phenomenon, where people with none or limited technical knowledge are
able to build digital products (Hoogsteen and Borgman, 2022). The opposite could be true
as well - with LCNC, professional developers can now also become business owners or be
more involved in other business processes (Ferati, personal communication, 2025;
Baltazar, personal communication, 2025) because of efficiency gains (Cunha, personal
communication, 2025).

The work responsibilities of UI/UX designers can be absorbed by developers (Jessop,
personal communication, 2025) and designers can become citizen developers with LCNC
(Ferati, personal communication, 2025). In addition to that, a respondent observed that
there are lesser product testers in agile development teams adopting LCNC (Jessop,
personal communication, 2025). Teams are observed to be smaller as team members often
take multiple roles (Ben Yaacoub, personal communication, 2025; Baltazar, personal
communication, 2025; Cardinaels, personal communication, 2025). However, the
combining of roles may also lead to communication issues and that citizen development
may not be appropriate for bigger enterprise projects (Cunha, personal communication,
2025).

The role of product owners could get more technical as LCNC is less complicated than

traditional software development approaches (Ferati, personal communication, 2025; Ben
Yaacoub, personal communication, 2025). LCNC approach makes it easier for product

24



owner to organise their backlog and user stories (Ben Yaacoub, personal communication,
2025; Anonymous Participant personal communication, 2025). Scrum masters could be
able to take on more than one project and have multiple development teams with LCNC as
their work becomes easier with LCNC especially with certain LCNC platforms such as
OutSystems which are designed with Agile in mind (Jessop, personal communication,
2025; Ben Yaacoub, personal communication, 2025; Baltazar, personal communication,
2025; Cunha, personal communication, 2025). With LCNC and Scrum, the role of business
analyst can be combined with either the product owner or scrum master (Ben Yaacoub,
personal communication, 2025; Cardinaels, personal communication, 2025). With roles
being combined, organisations could possibly be saving costs on human resources. This
finding aligns with Khalajzadeh and Grundy (2025) proposition where low-code/no-code
(LCNC) solutions enhance the firm’s business agility as it mitigates developer shortages

by minimizing dependencies with dedicated IT professionals.

4.5 Al lIntegration in LCNC

With the emergence of generative Al, it makes it even easier for one to build digital
products. The interviews conducted for this thesis tries to explore how Al plays a role in the
impact of LCNC on scrum given the limited research resources regarding the use of Al in
LCNC development (Kandaurova, 2024). Al models such as the one used in § 3.3.1 which
can be installed locally and operated with CLI are able to generate a software practically
with almost zero coding knowledge. Not only it is able to build and develop something from
scratch but is able to debug and troubleshoot itself. The models can code and develop
software faster and may pose as a competition to LCNC vendors if not adopted (Jessop,

personal communication, 2025).

LCNC platforms should be the enabler of Al-use by making it easier for developers to
integrate Al agents in the application for end users (Baltazar, personal communication,
2025). As shown in the transcriber web app build in § 3.3.1 and mentioned by Ferati
(personal connection, 2025), it is possible to have Al powered automation with LCNC
approaches. Al would be a good addition to LCNC as a copilot and as a decision support
assistant, thus making the work of the developer even easier, increasing their productivity
and accelerating the delivery even more than the current rate with LCNC solutions (Ferati,
personal communication, 2025; Anonymous Participant, personal communication, 2025;
Cunha, personal communication, 2025; Pankowska, personal communication, 2025;

Baltazar, personal communication, 2025).

25



5 Conclusion

This research set out to answer the fundamental question:

How does the use of Low-Code/No-Code platforms impact Agile development

teams?

By adapting Schmidt's (2016) agile performance dimensions framework to LCNC contexts,
the study validates the continued relevance of software quality, transparency, and progress
as key performance indicators of agile teams while revealing how these dimensions

manifest differently in LCNC environments.

Through comprehensive analysis of interview data from eight practitioners across various
LCNC platforms and organizational contexts, several key insights have emerged that
contribute to the current research landscape of LCNC, citizen development and agile.
LCNC platforms demonstrate a generally positive impact on software quality through
reduced frontend defects and improved maintainability, though this benefit is depends on

management processes, business context and complexity of project.

With regards to transparency, communication and collaboration patterns reveal a divergent
impact between internal and external stakeholder interactions. External communication
with stakeholders may be significantly improved. This improvement is attributed to faster
iteration delivery and the ability for non-technical stakeholders to participate directly in the
development process through citizen development. However, internal team communication
presents a more conflicting picture. While smaller team sizes can enhance communication
efficiency, LCNC platform limitations such as limited version control capabilities and

platform specific features can create new communication barriers.

With LCNC, there is bound to be a fundamental restructuring of traditional Agile roles.
Teams operating with LCNC platforms tend to be significantly smaller, with members
assuming hybrid responsibilities. The consolidation of traditional roles like UI/UX designers
into developer responsibilities, and business analysts’ roles with scrum master's or product
owners’ responsibilities because of LCNC adoption represents a shift toward even more

cross-functional team structures that align with Agile principles.
While LCNC platforms can accelerate development and improve workflow especially for

simpler applications, this advantage diminishes with project complexity. As Miguel Baltazar
noted, the removal of development bottlenecks through LCNC causes bottlenecks to shift

26



to other areas in a project thus necessitating a holistic adoption of Agile methods rather
than simply adopting LCNC tools. This research provides initial evidence that LCNC
platforms, when properly implemented within appropriate contexts, can enhance Agile

team performance and enable new forms of cross-functional collaboration.

With generative Al, it is even easier to develop applications with the LCNC approach as
shown in § 3.3.1, thus making the job of the developer easier. This could potentially result
in developers being more efficient and productive. By combining Al and LCNC approaches
with Agile, the delivery of a digital product could be accelerated even further. In addition to
that, software made with LCNC have the possibility of Al agents enabling automation of

certain processes.

While this study tries to be as representative as possible by interviewing developers, LCNC
vendors, academics and business analysts, this study's limitations include its reliance on
purposive and snowball sampling, focus solely on Scrum framework, and the absence of
quantitative data. The relatively small sample size of eight participants, while providing rich
qualitative insights, limits empirical proof. This study could merely serve as a proof of
concept for further empirical research on the interplay between LCNC, Agile and Artificial

Intelligence.

27



6 References

Agile Alliance. (n.d.). Principles behind the Agile Manifesto. Agile
Manifesto. https://agilemanifesto.org/principles.html

Alamin, M. A. A, Uddin, G., Malakar, S., Afroz, S., Haider, T., & Igbal, A. (2023). Developer
discussion topics on the adoption and barriers of low code software development
platforms. Empirical Software Engineering : An International Journal, 28(1), 4—4.
https://doi.org/10.1007/s10664-022-10244-0

Almeida, F., & Carneiro, P. (2023). Perceived Importance of Metrics for Agile Scrum Environments.
Information (Basel), 14(6), Article 327. https://doi.org/10.3390/info14060327

Aksenova, Z. A., Yashin, S. N., Markova, O. M., Chudaeva, A. A., & Alieva, P. R. (2024). Assessing
the Impact of Digital Economy Programs on Alleviating Skill Shortages in the EU Labor Market for
Digital Professionals. Journal of the Knowledge Economy. https://doi.org/10.1007/s13132-024-
02202-6

Alt, R., Leimeister, J. M., Priemuth, T., Sachse, S., Urbach, N., & Wunderlich, N. (2020). Software-
Defined Business: Implications for IT Management. Business & Information Systems
Engineering, 62(6), 609-621. https://doi.org/10.1007/s12599-020-00669-6

Al-Zewairi, M., Biltawi, M., Etaiwi, W., & Shaout, A. (2018). Agile Software Development
Methodologies: Survey of Surveys. Estonian Journal of Earth Sciences, 67(3), 74-.
https://doi.org/10.4236/jcc.2017.55007

Ajimati, M. O., Carroll, N., & Maher, M. (2025). Adoption of low-code and no-code development: A
systematic literature review and future research agenda. The Journal of Systems and Software,
222, 112300-. https://doi.org/10.1016/j.jss.2024.112300

Ang, R. J. (2021). Building Applications Using Low-Code and No-Code Platforms. Canadian
Journal of Nursing Informatics, 16(3/4).

Appian Corporation. (2019, April 2). Independent study: 84% of firms with highest enterprise
requirements use low-code development and see return-on-investment [Press release].
https://www.appian.com/news/news-item/independent-study-84-of-firms-with-highest-enterprise-
requirements-use-low-code-development-and-see-return-on-investment/

Babaian, A. (2019). Becoming Agile with the Scrum Framework. Software Quality Professional,
22(1), 23-33.

Barkin, I., & Davenport, T. H. (2023). Harnessing grassroots automation. MIT Sloan Management
Review, 65(1), 74-78. Retrieved from https://kuleuven.e-bronnen.be/scholarly-journals/harnessing-
grassroots-automation/docview/2954922318/se-2

Bass, J. M. (2022). Agile software engineering skills. Springer Nature Switzerland
AG. https://doi.org/10.1007/978-3-031-05469-3

Behutiye, W. N., Rodriguez, P., Oivo, M., & Tosun, A. (2017). Analyzing the concept of technical
debt in the context of agile software development: A systematic literature review. Information and
Software Technology, 82, 139—158. https://doi.org/10.1016/j.infsof.2016.10.004

Bhattacharyya, S. S., & Kumar, S. (2023). Study of deployment of “low code no code” applications
toward improving digitization of supply chain management. Journal of Science and Technology
Policy Management, 14(2), 271-287. https://doi.org/10.1108/JSTPM-06-2021-0084

Bibik, 1. (2018). How to kill the Scrum monster: Quick start to Agile Scrum methodology and the
Scrum Master role. Apress. https://doi.org/10.1007/978-1-4842-3691-8

Bock, A. C., & Frank, U. (2021). Low-Code Platform. Business & Information Systems
Engineering, 63(6), 733-740. https://doi.org/10.1007/s12599-021-00726-8

28



Breyter, M. (2022). Agile product and project management: A step-by-step guide to building the
right products right. Apress. https://doi.org/10.1007/978-1-4842-8200-7

Callinan, N., & Perry, M. (2024). Critical Success Factors for Citizen Development. Open Journal of
Applied Sciences, 14(4), 1121-1149.

Cassell, C. (2015). Conducting research interviews for business and management students. SAGE.
Chen, W.-E., Lin, Y.-B., Yen, T.-H., Peng, S.-R., & Lin, Y.-W. (2022). DeviceTalk: A No-Code Low-
Code IoT Device Code Generation. Sensors (Basel, Switzerland), 22(13), 4942-.
https://doi.org/10.3390/s22134942

Dushnitsky, G., & Stroube, B. K. (2021). Low-code entrepreneurship: Shopify and the alternative
path to growth. Journal of Business Venturing Insights, 16, e00251-.
https://doi.org/10.1016/}.jbvi.2021.e00251

Edison, H., Wang, X., & Conboy, K. (2022). Comparing Methods for Large-Scale Agile Software
Development: A Systematic Literature Review. IEEE Transactions on Software Engineering, 48(8),
2709-2731. https://doi.org/10.1109/TSE.2021.3069039

Elshan, E., Binzer, B., & Winkler, T. J. (2025). From Software Users to Software Creators: An
Exploration of the Core Characteristics of the Citizen Developer Role and the Related Re- and
Upskilling Programs: From Software Users to Software Creators. Business & Information Systems
Engineering, 67(1), 31-53. https://doi.org/10.1007/s12599-024-00915-1

Fikri, H. (2025). Interview transcripts: Low-code/no-code impact on agile teams [Unpublished raw
data]

Fikri, H. (2025). Thematic coding analysis of LCNC interviews [Unpublished raw data].
Golov, R. S., & MyI'nik, A. V. (2023). Low-Code and No-Code Technologies in Designing Digital

Infrastructure for High-Tech Enterprises. Russian Engineering Research, 43(3), 334-335.
https://doi.org/10.3103/S1068798X2304010X

Guthardt, T., Kosiol, J., & Hohlfeld, O. (2024). Low-code vs. the developer: An empirical study on
the developer experience and efficiency of a no-code platform. Proceedings of the ACM/IEEE 27th
International Conference on Model Driven Engineering Languages and Systems, 856—865.
https://doi.org/10.1145/3652620.3688332

Hagel, N., Hili, N., & Schwab, D. (2024). Turning Low-Code Development Platforms into True No-
Code with LLMs. MODELS Companion '24 Proceedings, 876—885.
https://doi.org/10.1145/3652620.3688334

Hanson, K. (2024). Beyond Lean. Manufacturing Engineering, 173(5), 32-39.

Havelund, K., Steffen, B., & Margaria, T. (2021). Programming: What is Next. In Leveraging
Applications of Formal Methods, Verification and Validation (Vol. 13036, pp. 195-201). Springer
International Publishing AG. https://doi.org/10.1007/978-3-030-89159-6 13

Hoogsteen, D., & Borgman, H. (2022). Empower the workforce, empower the company? Citizen
development adoption.

How No-Code/Low-Code Solutions Help IT Organizations Evolve. (2023). Cio, https://kuleuven.e-
bronnen.be/trade-journals/how-no-code-low-solutions-help-organizations/docview/2763221844/se-2

Hurlburt, G. (2021). Low-Code, No-Code, What's Under the Hood? IT Professional, 23(6), 4—7.
https://doi.org/10.1109/MITP.2021.3123415

Jaglan, N., Upadhyay, D., Bhattacharya, A., Dutta, S., Piuri, V., & Dutta, P. (2023). Decoding Low-
Code/No-Code Development Hype—Study of Rapid Application Development Worthiness

and Overview of Various Platforms. In Innovations in Data Analytics (Vol. 1442, pp. 419-427).
Springer. https://doi.org/10.1007/978-981-99-0550-8 33

29



Jain, P., Sharma, A., & Ahuja, L. (2018). Software Maintainability Estimation in Agile Software
Development. International Journal of Open Source Software & Processes, 9(4), 65-78.
https://doi.org/10.4018/IJOSSP.2018100104

Kandaurova, M., Skog, D. A., & Bosch-Sijtsema, P. M. (2024). The Promise and Perils of Low-Code
Al Platforms. MIS Quarterly Executive, 23(3), 275-. https://doi.org/10.17705/2msqge.00098

Kanellopoulos, Y., & Yu, Y. (2015). Guest editorial: Special section: Software quality and
maintainability. Software Quality Journal, 23(1), 77-78. https://doi.org/10.1007/s11219-015-9270-x

Kass, S., Strahringer, S., & Westner, M. (2022). Drivers and Inhibitors of Low Code Development
Platform Adoption. 2022 IEEE 24th Conference on Business Informatics (CBI), 1, 196—205.
https://doi.org/10.1109/CBI54897.2022.00028

Kass, S., Strahringer, S., & Westner, M. (2023). Practitioners’ Perceptions on the Adoption of Low
Code Development Platforms. IEEE Access, 11, 1-1.
https://doi.org/10.1109/ACCESS.2023.3258539

Khalajzadeh, H., & Grundy, J. (2025). Accessibility of low-code approaches: A systematic literature
review. Information and Software Technology, 177, 107570-.
https://doi.org/10.1016/j.infsof.2024.107570

Kelly, W., Schréder, J., & Roock, S. (2019). Agile software architecture: Aligning agile processes
and software architectures. Apress. https://doi.org/10.1007/978-1-4842-5168-3

Kirchhof, J. C., Jansen, N., Rumpe, B., & Wortmann, A. (2023). Navigating the Low-Code
Landscape: A Comparison of Development Platforms. 2023 ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems Companion (MODELS-C), 854—862.
https://doi.org/10.1109/MODELS-C59198.2023.00135

Kok, C. L., Tan, H. R,, Ho, C. K, Lee, C., Teo, T. H., & Tang, H. (2024). A Comparative Study of Al
and Low-Code Platforms for SMEs: Insights into Microsoft Power Platform, Google AutoML and
Amazon SageMaker. Proceedings (IEEE International Symposium on Embedded
Multicore/Manycore SoCs. Online), 50-53. https://doi.org/10.1109/MCS0C64144.2024.00018

Lebens, M., & Finnegan, R. (2021). Using a Low Code Development Environment to Teach the
Agile Methodology. Lecture Notes in Business Information Processing, 419, 191-199.
https://doi.org/10.1007/978-3-030-78098-2 12

Lethbridge, T. C., Margaria, T., & Steffen, B. (2021). Low-Code Is Often High-Code, So We Must
Design Low-Code Platforms to Enable Proper Software Engineering. In Leveraging Applications of
Formal Methods, Verification and Validation (Vol. 13036, pp. 202—212). Springer International
Publishing AG. https://doi.org/10.1007/978-3-030-89159-6 14

Liu, D., Jiang, H., Guo, S., Chen, Y., & Qiao, L. (2024). What's Wrong With Low-Code Development
Platforms? An Empirical Study of Low-Code Development Platform Bugs. IEEE Transactions on
Reliability, 73(1), 695-709. https://doi.org/10.1109/TR.2023.3295009

Low Code/No Code Application Development - Opportunity and Challenges for Enterprises. (n.d.).
https://doi.org/10.17762/ijritcc.v10i11.11038

Lépez, L., Burgués, X., Martinez-Fernandez, S., Vollimer, A. M., Behutiye, W., Karhapaa, P.,
Franch, X., Rodriguez, P., & Oivo, M. (2022). Quality measurement in agile and rapid software
development: A systematic mapping. The Journal of Systems and Software, 186, Article 111187.
https://doi.org/10.1016/}.jss.2021.111187

Luo, Y., Liang, P., Wang, C., Shahin, M., & Zhan, J. (2021). Characteristics and Challenges of Low-
Code Development: The Practitioners’ Perspective. ESEM 2021 - Proceedings of the 15th
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, 1-11.
https://doi.org/10.1145/3475716.3475782

Lutwama, P., Dlulane, M., Pillay, T., Hassan, F. S., & Grobbelaar, S. (2024). AGILE: Advantages,
Disadvantages, Enablers, and Barriers. South African Journal of Industrial Engineering, 35(4), 66—
76. https://doi.org/10.7166/35-4-3058

30



Maassen, M. A. (2018). Product development models in the IT sector-From Waterfall to Agile
Project Management Model s in the case of AVIRA SOFT S.R.L. Proceedings of the ... International
Conference on Business Excellence, 12(1), 568-578. https://doi.org/10.2478/picbe-2018-0051

Martins, J., Branco, F., & Mamede, H. (2023). Combining low-code development with ChatGPT to
novel no-code approaches: A focus-group study. Intelligent Systems with Applications, 20, 200289-.
https://doi.org/10.1016/j.iswa.2023.200289

Matook, S., Wang, Y. M., & Axelsen, M. (2025). Experiential Learning for Citizen
Developers. Business & Information Systems Engineering, 67(1), 7-30.
https://doi.org/10.1007/s12599-024-00921-3

Matvitskyy, O., Davis, K., & one more. (2024, October 16). Magic Quadrant for Enterprise Low-
Code Application Platforms (ID G00804341). Gartner,
Inc. https://www.gartner.com/doc/reprints?id=1-2J40TC35&ct=241017&st=sb

Maximini, D. (2018). The Scrum Culture: Introducing Agile Methods in Organizations (2nd ed.
2018.). Springer International Publishing AG. https://doi.org/10.1007/978-3-319-73842-0

Noll, J., Razzak, M. A., Bass, J. M., Beecham, S., Winkler, D., Méndez Fernandez, D., Sarro, F.,
Turhan, B., Kalinowski, M., & Felderer, M. (2017). A Study of the Scrum Master’s Role. In Product-
Focused Software Process Improvement (Vol. 10611, pp. 307-323). Springer International
Publishing AG. https://doi.org/10.1007/978-3-319-69926-4 22

No-Code, Low-Code Software Comes to HR. (2021). HRNews, https://kuleuven.e-
bronnen.be/trade-journals/no-code-low-software-comes-hr/docview/2516867512/se-2

Papatheocharous, E., & Andreou, A. S. (2014). Empirical evidence and state of practice of software
agile teams. Journal of Software : Evolution and Process, 26(9), 855-866.
https://doi.org/10.1002/smr.1664

Pavlic, L., Hlis, T., Hericko, M., & Beranic, T. (2022). The Gap between the Admitted and the
Measured Technical Debt: An Empirical Study. Applied Sciences, 12(15), 7482-.
https://doi.org/10.3390/app12157482

Phalake, V., Joshi, S., Rade, K., & Phalke, V. (2022). Modernized Application Development Using
Optimized Low Code Platform. 2022 2nd Asian Conference on Innovation in Technology
(ASIANCON), 1-4. https://doi.org/10.1109/ASIANCON55314.2022.9908726

Picek, R. (2023). Low-code/No-code Platforms and Modern ERP Systems. 2023 International
Conference on Information Management (ICIM), 44—49.
https://doi.org/10.1109/ICIM58774.2023.00014

Putta, A., Paasivaara, M., & Lassenius, C. (2018). Adopting scaled agile framework (SAFe): a
multivocal literature review. Proceedings of the 19th International Conference on Agile Software
Development: Companion, 147763, 1-4. https://doi.org/10.1145/3234152.3234164

Prommegger, B., Arshad, D., & Krcmar, H. (2021). Understanding Boundaryless IT Professionals:
An Investigation of Personal Characteristics, Career Mobility, and Career Success. Proceedings of
the 2021 Computers and People Research Conference, 51-59.
https://doi.org/10.1145/3458026.3462162

Razak, S. F. A., Ernn, Y. P., Yussoff, F. |., Bukar, U. A., & Yogarayan, S. (2024). Enhancing
Business Efficiency through Low-Code/No-Code Technology Adoption: Insights from an Extended
UTAUT Model. Journal of Human, Earth, and Future, 5(1), 85-99. https://doi.org/10.28991/HEF-
2024-05-01-07

Rethinking enterprise architects’ roles for agile transformation. (2024). Cio, Retrieved from
https://kuleuven.e-bronnen.be/trade-journals/rethinking-enterprise-architects-roles-
agile/docview/3106294254/se-2

31



Ramesh, K. R., Divya, P. (2024) Revolutionizing Software Development: the Rise of No Code/low
Code Development Solutions in Digital Era. International Journal For Multidisciplinary Research.
https://doi.org/10.36948/ijfmr.2024.v06i02.16706

Rokis, K., & Kirikova, M. (2023). Exploring Low-Code Development: A Comprehensive Literature
Review. Complex Systems Informatics and Modeling Quarterly, 2023(36), 68—86.
https://doi.org/10.7250/csimqg.2023-36.04

Rokis, K., Kirikova, M., Seigerroth, U., Sandkuhl, K., & Nazaruka, E. (2022). Challenges of Low-
Code/No-Code Software Development: A Literature Review. In Lecture Notes in Business
Information Processing (Vol. 462, pp. 3-17). Springer International Publishing AG.
https://doi.org/10.1007/978-3-031-16947-2 1

Sahay, A., Indamutsa, A., Di Ruscio, D., & Pierantonio, A. (2020). Supporting the understanding
and comparison of low-code development platforms. 2020 46th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), 171-178.
https://doi.org/10.1109/SEAA51224.2020.00036

Sanchis, R., Garcia-Perales, O., Fraile, F., & Poler, R. (2020). Low-code as enabler of digital
transformation in manufacturing industry. Applied Sciences, 10(1), 12-.
https://doi.org/10.3390/app10010012

Schmidt, C. (2016). Agile software development teams: The impact of agile development on team
performance. Springer. https://doi.org/10.1007/978-3-319-26057-0

Schwaber, K., & Sutherland, J. (2020). The Scrum Guide: The definitive guide to Scrum: The rules
of the game. Retrieved from https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-

US.pdf

Shastri, Y., Hoda, R., & Amor, R. (2021). The role of the project manager in agile software
development projects. Journal of Systems and Software, 173, 110871.
https://doi.org/10.1016/j.jss.2020.110871

Stettina, C. J., van Els, V., Croonenberg, J., & Visser, J. (2021, June). The impact of agile
transformations on organizational performance: a survey of teams, programs and portfolios.
In International Conference on Agile Software Development (pp. 86-102). Cham: Springer
International Publishing.

Tal, L. (2015). Agile software development with HP Agile Manager. Apress.
https://doi.org/10.1007/978-1-4842-1035-2

Tang, L. (2022). ERP Low-Code Cloud Development. 2022 IEEE 13th International Conference on
Software Engineering and Service Science (ICSESS), 319-323.
https://doi.org/10.1109/ICSESS54813.2022.9930146

Thesing, T., Feldmann, C., & Burchardt, M. (2021). Agile versus Waterfall Project Management:
Decision Model for Selecting the Appropriate Approach to a Project. Procedia Computer
Science, 181, 746-756. https://doi.org/10.1016/j.procs.2021.01.227

Uludag, O., Putta, A., Paasivaara, M., & Matthes, F. (2021, June). Evolution of the agile scaling
frameworks. In International conference on agile software development (pp. 123-139). Cham:
Springer International Publishing.

Vincent P, Natis Y, lijima K, Wong J, Ray S, Jain A, Leow A (2020) Magic quadrant for enterprise
low-code application platforms. Gartner Report September 2020, Gartner

Wagqas, M., Ali, Z., Sanchez-Gorddn, M., Kristiansen, M., Mejia, J., Hernandez Pérez, Y., Avila-
George, H., Rocha, A., & Mufioz, M. (2024). Using LowCode and NoCode Tools in DevOps:

A Multivocal Literature Review. In New Perspectives in Software Engineering (Vol. 1135, pp. 71—
87). Springer. https://doi.org/10.1007/978-3-031-50590-4 5

Wolf, T., Schroder, J., & Roock, S. (2019). Agile software architecture: Aligning agile processes and
software architectures. Apress. https://doi.org/10.1007/978-1-4842-5169-0

32



Wolff, I. (2019). Making In-House Apps with Low-Code, No-Code Platforms. Manufacturing
Engineering, 163(4), 58—-67.

Woo, M. (2020). The Rise of No/Low Code Software Development—No Experience Needed?
Engineering (Beijing, China), 6(9), 960-961. https://doi.org/10.1016/j.eng.2020.07.007

Zielinski, D. (2021). No-code, low-code software comes to HR. HRNews. Retrieved
from https://kuleuven.e-bronnen.be/trade-journals/no-code-low-software-comes-
hr/docview/2516867512/se-2

33



List of figures

L L e 8
FIGURE 2.ttt s s e e s e s 8
FIGURE 3.ttt e s e s s e s 9
FIGURE 4.t s s s s s 10
FIGURE 5.ttt s s s e 11
FIGURE B.....ccoiiiir st s s s s s s 15
FIGURE 7 ...ttt s s s s s s 21
FIGURE 8.ttt s s s 21
FIGURE 9.ttt s s s s s s s 21

34



List of tables

LY = 1 e 12
TABLE 2.t e 16
LY = 1 17
TABLE 4......... e 18
TABLES...... e 19

35



Appendices

Appendix 1: Link to all research files

https://drive.google.com/drive/folders/1fxKOWZYh472B adBUxHcKyFizWI ZDJa?usp=drive link
Note. All files have been reviewed carefully to ensure anonymity of some research participants.

36



