

FACULTY OF ECONOMICS AND BUSINESS

The Organizational impact
of Low-code/No-Code on
Agile Development Teams

Haikal Fikri
R0866511

Promoter: Prof. Dr. Yves Wautelet

Thesis submitted to obtain the degree of

MASTER OF BUSINESS ADMINISTRATION
Business Information Management

Academic year 2024-2025

FACULTY OF ECONOMICS AND BUSINESS

The Organisational
Impact of Low-Code/No-
Code on Agile
Development Teams

How does the use of Low-code/No-code platforms
impact Agile development teams?

This research investigates the impact of Low-Code/No-Code (LCNC) platforms on
Agile development teams, addressing a gap in existing literature that has primarily
examined these technologies in isolation. Through semi-structured interviews with
eight industry practitioners experienced in both LCNC platforms and Agile
methodologies, this qualitative study explores how LCNC adoption affects team
performance and dynamics within Scrum frameworks.

The study demonstrates that while LCNC platforms align well with Agile principles of
rapid iteration and customer collaboration, their impact is highly context-dependent,
varying with project complexity, team maturity, and management processes. These
findings have practical implications for organizations considering LCNC adoption within
their Agile frameworks, suggesting the need for careful consideration of project
suitability and project management processes to maximize benefits.

 I

Acknowledgements

I would like to thank Prof. Dr. Yves Wautelet, my promoter, for his guidance

throughout this thesis and for his instruction in the program's course

modules, which provided essential knowledge for this research.

I also thank Prof. Stephan Poelmans for his course modules that contributed

to my understanding of the subject matter and facilitated the completion of

this thesis.

I am grateful to my parents for funding my master's program and making

this educational opportunity possible.

Thank you to all interview participants who contributed their time and

expertise to this research: Miguel Baltazar, Dennis Cardinaels, Metin Ferati,

Prof. Malgorzata Pankowska, Charlie Jessop, Mario Cunha, Oubaida Ben

Yaacoub, and those who preferred to remain anonymous. Their insights

were essential to this study.

 II

Table of contents1

LIST OF ABBREVIATIONS ... 2

1 INTRODUCTION ... 3

2 LITERATURE REVIEW ... 4

2.1 LOW-CODE/NO-CODE PLATFORMS .. 4
2.2 AI AND LCNC ... 5
2.3 LCNC IMPACT ON TECHNICAL DEBT ... 6
2.4 AGILE METHODOLOGIES .. 6
2.5 SCRUM ... 7

2.5.1 The Scrum Process .. 7
2.5.2 Measuring Performance in Scrum teams ... 9

2.6 IMPLICATIONS OF LCNC PLATFORMS ON AGILE METHODS 12

3 RESEARCH METHODOLOGY ... 15

3.1 INTERVIEW DESIGN ... 16
3.2 INTERVIEW PARTICIPANTS SELECTION .. 18
3.3 DATA COLLECTION AND ANALYSIS .. 18

3.3.1 Building a Transcriber Web App with LCNC ... 19

4 DISCUSSION .. 22

4.1 SOFTWARE QUALITY & MAINTAINABILITY .. 22
4.2 COMMUNICATION & COLLABORATION ... 23
4.3 DELIVERY SPEED & WORKFLOW EFFICIENCY .. 23
4.4 ROLE & RESPONSIBILITY CHANGES .. 24
4.5 AI INTEGRATION IN LCNC .. 25

5 CONCLUSION .. 26

6 REFERENCES .. 28

1 This document might contain texts from earlier submitted documents within the same educational

programme, related to the Master’s Thesis process of the same author as the author of this
work.

 1

Copyright Information:

This is a student paper as part of an academic
education and examination. No correction was
made after the examination.

 2

List of Abbreviations
Abbreviation Full Form

AI Artificial Intelligence
BDD Behavior-Driven Development
CLI Command Line Interface
ERP Enterprise Resource Planning
EU European Union
HR Human Resources
IoT Internet of Things
IT Information Technology
LCNC Low-Code/No-Code
LeSS Large-scale Scrum
MBA Master of Business Administration
PO Product Owner
RQ Research Question
SAFe Scaled Agile Framework
SAP Systems, Applications & Products
SDLC Software Development Life Cycle
SM Scrum Master
TDD Test-Driven Development
UML Unified Modeling Language
XP eXtreme Programming
Note: This list includes abbreviations found in the main body of the thesis (Chapters 1-5),
excluding those appearing only in appendices and references.

 3

1 Introduction

Over the last few years, countries in the European Union (EU) have been facing a labor

shortage of skilled digital professionals (Aksenova et al., 2024). Citizen development could

address such shortages (Hoogsteen and Borgman, 2022). The creation of business

applications by individuals without an IT background is commonly known in the literature

as citizen development (Hoogsteen and Borgman 2022). The citizen development

phenomenon can be attributed to the emergence and adoption of low-code/no-code

platforms (Hoogsteen and Borgman, 2022). Low-code/no-code (LCNC) platforms enhance

the firm’s business agility as it mitigates developer shortages by minimizing dependencies
with dedicated IT professionals (Khalajzadeh and Grundy, 2025). While shortage of skilled

IT labour is a concerning issue, the use of LCNC platforms may also result in possible cost

reductions as development teams are downsized and replaced with automation (Golov and

Myl’nik, 2023).

The use of IT is increasingly expanding across various business functions (Promegger et

al., 2021). The role of IT is increasingly becoming more strategic in businesses and

organisations (Alt et al., 2020) and digital transformation of organisations will only intensify
in the coming years (Alt et al., 2020). Low-code platforms will foreseeably amplify the digital

transformation process of organisations in the coming years (Vincent et al., 2019). Golov

and Myl’nika (2023) reported that 90 percent of time can be saved in digital transformation

projects by utilising LCNC. Furthermore, LCNC platforms can reduce the barrier for

innovation through user-driven creativity, thus creating value for the business (Callinan and

Perry, 2024).

Combining Low-code/no-code (LCNC) approach with Agile methodologies can result in
efficiency gains for businesses (Hanson, 2024). The citizen development promotes the

agility of a company given limited resources (Callinan and Perry, 2024). Agile

methodologies have been gaining popularity in the world of software development in the

recent years (Edison et al., 2022). Agile methods focus on iterations and testing, has less

of a procedural approach (Thesing and Feldmann, 2020) and is more flexible compared to

other project management methods (Lutwama et al., 2024). Scrum, eXtreme Programming

(XP) and Kanban are three of the most common agile frameworks (Lutwama et al., 2024).
Agile methods have been found to increase customer satisfaction (Putta et al., 2018) as

well as employee satisfaction (Stettina et al., 2021). While there are multiple research

materials addressing the benefits of adopting LCNC development and the benefits of

adopting Agile methods, little research have been done to assess the impact of LCNC

development on Agile development teams. This research aims to address that gap and find

the effect of LCNC development on agile development teams.

 4

2 Literature Review

To study how LCNC development impacts agile teams, a review of relevant existing

literature study and related works is carried out. This section addresses first the LCNC

development followed by Agile Methods before finally addressing the relationship of LCNC

and Agile.

2.1 Low-code/No-code platforms

Low-code applications can be used in different business purposes in different industry

settings (Phalake et al.,2023). LCNC development makes business process automation

easier and less complex (Luo et al., 2021). Picek (2023) illustrated several use cases of

applications made with LCNC development in the field of enterprise resource management

(ERP). Zielinski (2021) wrote about how employees of a company’s human resource (HR)

department utilised LCNC development to build an application that streamlines HR-related

work. In China, a growing number of companies are adopting the LCNC approach to

develop enterprise resource management (ERP) applications (Tang, 2021). Kalaivani et al.
(2024) utilised both LCNC development and Agile methods to develop a visitor

management application for a hospital. LCNC development can make it easier for people

to create applications for Internet of Things (IoT) devices (Chen et al., 2022). From an

organisational perspective, LCNC is bound to change the roles and responsibilities of

employees, organisational culture (CIO, 2023), and decision-making processes (Bock and

Frank, 2021).

As of 2020, there are over 200 Low-Code/No-Code platforms available in the market

(Sahay et al., 2020). Microsoft Power Apps, Mendix and OutSystems are the current

leaders of LCNC development platforms (Matvitskyy et al., 2024). Low code platforms are

defined as platforms designed to facilitate fast application development, deployment,

execution, and management (Vincent et al., 2020). Low code/no code platforms is

characterised by its model-driven or visual development approach without the need for prior

computer programming knowledge (Ang, 2021). This means users can easily build digital

products by dragging and dropping components with little to no need of coding (Woo,
2020). The adoption of low-code/no-code platforms by companies is driven by enhanced

software development efficiency, lower barriers to application creation and faster time to

market (Käss et al., 2022). Developer shortages is also one of the factors of LCNC adoption

(Guthardt et. al, 2024). Businesses can save on development costs as lesser resources

are being used when they adopt LCNC solutions to develop a product (Jaglan and

Upadhay, 2022). LCNC platforms have the potential to substantially shorten the software

 5

development lifecycle (SDLC) (Bhattacharyya and Kumar, 2023) therefore minimising

costs (Sanchis et al., 2020; Rokis and Kirikova, 2023).

Applications made with LCNC platforms can perform as well as those made traditionally

with code (Guthardt et al., 20) and are easier to maintain (Rokis and Kirikova, 2023). Java

and Javascript are two of the most common language used in LCNC development (Luo et

al., 2021). LCNC platforms have made it easier for applications to scale and for developers
to fix bugs found on the application product (Sahay et al., 2020). However, it is reported

that LCNC platforms that are used to build the application itself can be buggy at times

especially when designing applications (Liu et al., 2024). Applications developed by LCNC

platforms may also have security vulnerabilities and performance issues (Woo, 2020;

Ramesh and Divya, 2024; Hurlburt, 2021). The lack of proper documentation processes is

one of the reasons why businesses avoid building applications with LCNC approach (Käss

et al., 2023). LCNC platforms lack interoperability as standards and conventions differ

depending on the platform developer, hence leading to vendor lock-in for end users of the
platforms (Sahay et al., 2020). In addition to that, privacy concerns regarding data and

intellectual property rights are also possible areas of concerns for end users of LCNC

platforms (Wolff, 2019). While LCNC development reduces complexity in building web and

mobile applications, there still exist a relatively steep learning curve in using LCNC

platforms (Luo et al., 2021). Kandaurova (2024) found that LCNC platform users still need

to have a basic knowledge in code to make a functioning application.

2.2 AI and LCNC

The current research landscape regarding the use of AI in LCNC development is currently

limited while there is growing interest among businesses (Kandaurova, 2024).

Incorporating AI into LCNC platforms enhances business agility by enabling real-time, data-

driven decision-making (Kok et al., 2024). LCNC platform vendors have started integrating

Artificial Intelligence (AI) features that assists builders in making their applications (Woo,

2020). The use of AI prompt engineering to model web and mobile applications can result

in LCNC platforms into “true no-code platforms’ allowing for faster iterations for Agile teams

(Hagel et al., 2024). ChatGPT’s large language model can generate boilerplate code
templates to build applications (Martins et al., 2023). Integrating AI and LCNC approach

can ensure adherence to standardization and best practices (Martins et al., 2023).

 6

2.3 LCNC impact on Technical Debt

Schmidt’s (2016) found that software quality is a determinant of the performance of Agile

development teams. This can be be related to the concept of technical debt. Technical debt

refers to the backlog of work that development teams accumulate on a product when they
take shortcuts during the development process prioritising speed for product delivery

(Pavlic et al., 2022). It is clear how the LCNC approach makes it easier for applications and

digital products to be developed. While LCNC development can reduce technical debt as

there are less poorly written code when building applications (CIO, 2023), Havelund and

Steffen (2021) along with Lethbridge (2021) argued that LCNC approach will lead to more

technical debt as the LCNC approach lacks functionalities that facilitate the standard

industry processes for software engineering such as version control. LCNC development

can result in code that are too complicated which adversely impacts technical debt
(Lethbridge, 2021; Havelund and Steffen, 2021) as it is harder to document and be

reutilised for future use (Lethbridge, 2021). From a management perspective, technical

debt can be reduced if enterprise architects simultaneously assume the role of product

owner in agile settings (CIO, 2024). It is still not clear yet how the citizen developer trend

that companies are adopting have an impact on technical debt (Barkin and Davenport,

2023).

2.4 Agile Methodologies

The agile methodology which was designed for software development is very much related

to the principles and concept of lean that was originally meant for manufacturing processes

(Babik, 2018). Agile Development is one of the most favoured methodologies of software

development in the twenty-first century because of its adaptability in fast-changing

environments where requirements change rapidly (Al-zewari et al, 2017). Agile
methodologies emphasize iterative development and continuous improvements, taking a

less rigid, procedural approach (Thesing & Feldmann, 2020) and offering greater flexibility

than traditional project management methods such as Waterfall (Lutwama et al., 2024).

Agile methodologies are widely adopted in the tech industry because it has been proven to

speed up the product’s time to market in dynamic environments where requirements

change at a fast rate (Papatheochaorus and Andreou, 2014). In its essence, the Agile

model focuses on collaborative interaction (Babik, 2018) and continuously incorporating
stakeholder feedback, particularly from customers, through small but frequent product

release and iterative updates, which leads to continuous evaluation and refinement

(Maassen, 2018). It has been shown that using Agile methodologies positively impact an

organization’s overall performance especially in terms of productivity and employee

 7

satisfaction (Stettina et al., 2021). Agile methodologies are not restricted to applications

only in the tech sector (Breyter, 2022). Business units can achieve business agility by

adopting agile into their workflow. Adopting agile practices improves in the business unit’s

capacity to respond rapidly to market shifts—staying efficient, customer-focused, and cost-

effective—while still maintaining high standards of quality (Breyter, 2022).

2.5 Scrum

2.5.1 The Scrum Process
Scrum is one of the widely used frameworks for the agile methodology (Maximini, 2018).

Scrum has a more dynamic, process-based, and flexible approach compared to eXtreme

Programming (XP) which focuses more on coding methods (Babik, 2018). Self-organizing

teams is a key feature of the agile scrum teams. Teams consists of members with a variety

of skills and specializations unlike conventional teams where individuals are grouped
according to their skill set (Bass, 2022).

The Product Owner and Scrum Master are the leading roles of the scrum team along with

architects, developers, technical writers, and quality managers (Babik, 2018). Schmidt

(2016) on the other hand suggested further that the development teams should not have

other specialist roles than programmers and that these programmers should have

necessary skills to make the team as cross-functional, lean, and flexible as possible.

The Product Owner (PO) acts as the customer’s proxy on the team, articulating their needs,

managing and organising the team’s objectives for the upcoming Sprint, and ensuring that

the work delivers real value to the customer (Schmidt, 2016; Kelly, 2019; Noll et al., 2017).

The Scrum Master (SM) serves as a facilitator and coordinator who upholds the Scrum

processes and removes any obstacles that could prevent the team from working effectively

(Schmidt, 2016; Shastri et al., 2021; Noll et al., 2017). While the function and title of project

manager is non-existent in Scrum, Shasri et al. (2021) proposed that the Scrum master
acts and functions as the de-facto project manager in Scrum teams. The Scrum master

facilitates Scrum ceremonies such as the sprint planning, sprint review and daily standups

(Noll et al., 2017).

 8

Figure 1

Scrum process diagram (Schmidt, 2016)

Note. Adapted from Agile software development teams: The impact of agile development on team performance

(p. 17), by C. Schmidt, 2016, Springer. © 2016 Springer.

The scrum essentially method breaks down the project into more workable smaller iterative

increments called sprints (Babik, 2018), in which developers are given the autonomy to
plan and manage the tasks assigned prior in sprint planning (Schwaber and Sutherland,

2020). Product features are defined by the product owner in the product backlog and are

called epics. Epics are further decomposed into user stories; a technology agnostic

description written from the point of view of the user (Bass, 2022). User stories includes

sub-tasks for the developers to work on (Breyter 2022).

Figure 2

Product Backlog hierarchy (Breyter, 2022)

Note. Adapted from Agile product and project management: A step-by-step guide to building the right products

right (p. 117), by M. Breyter, 2022, Apress. © 2022 Apress.

 9

The work defined in the product backlog is further distributed and decomposed in the sprint

backlog for each sprint iteration, which lasts for two to four weeks (Tal, 2015). Before each

sprint, a sprint planning meeting is organised to organise the deliverables for the upcoming

sprint (Tal, 2015). During sprint planning, the team selects which product-backlog stories

can be completed in the upcoming sprint by considering their velocity, available capacity,

and the estimated effort for each story (Noll et al., 2017). Kanban is a commonly utilised

tool to track and manage the work items and user stories (Breyter, 2022). Daily meetings

facilitated and coordinated by the scrum master are held during each sprint to update each

other daily on the work done (Babaian, 2019). At the end of each sprint, the team convenes
once again for a Sprint retrospective meeting where performance is reviewed (Tal, 2015).

s and bugs found after each sprint are listed as working items to be worked on again in

upcoming sprints by team members responsible for quality assurance (Tal, 2015).

2.5.2 Measuring Performance in Scrum teams

Figure 3

Hypothetical Burndown chart of an Agile Project (AI-Generated, 2025)

Team performance is perceived to be the most important metrics in an agile project and

velocity is one of the determining factors (Almeida & Carneiro, 2023). However, velocity as

a metric is not very reliable unless combined with cycle and lead time metrics (Almeida &
Carneiro, 2023). In each Scrum project, a burndown chart is used to measure the progress

of work done (Tal, 2015). The x-axis shows the time in calendar days and the y-axis shows

the amount of work done. A negative-sloping straight linear line called the burndown line is

drawn as a reference for the ideal work velocity, with flat lines representing weekends or

days where no work is expected to be done (Breyter, 2022; Tal, 2015). The actual progress

line is drawn as the days pass, by subtracting the amount of work done, and is not

necessarily linear (Breyter, 2022). If the team completes tasks faster than expected, then

 10

the actual progress line would appear lower than the reference line and if the team

completes tasks slower than expected, the progress line would appear higher than the

reference line. This is shown in Figure 3. In addition to the burndown chart that measures

progress in terms of work velocity, lead time and cycle time is measured (Breyter, 2022).

When using Kanban, lead time is the time measured from the inception of a user story till

its completion whereas the cycle time is the time measured from the point the user story is

worked on till its completion. Both lead time and cycle time of user stories can be averaged
out to serve as additional metrics for team performance.

Figure 4

Lead & cycle times (Breyter, 2022)

Note. Adapted from Agile product and project management: A step-by-step guide to building the right products

right (p. 199), by M. Breyter, 2022, Apress. © 2022 Apress.

Schmidt (2016) investigated the impact of Agile on development teams in SAP SE with

empirical methods. In his research that was compiled into a book, team performance was

broken down into several dimensions, namely: internal and external software quality, which

is categorised as outcome-oriented performance, in addition to progress, predictability, and

transparency, which are categorised as process-oriented performance (Schmidt, 2016). Of

these dimensions, progress, software quality and transparency are statistically significant
(Schmidt, 2016). The progress dimension is determined by velocity and speed of work. The

transparency dimension is determined by external and internal communication of teams

(Schmidt, 2016). Software quality is determined by code reusability and maintainability,

stakeholder satisfaction, and the conformity and compliance of the software to the client’s

requirements and requested functionalities (Schmidt, 2016).

Software maintenance is formally defined as making changes to software after it has been

delivered, with the goal of fixing bugs, enhancing performance or other features, or
adjusting the software to work in changed conditions. Maintainability describes how easily

 11

and efficiently these maintenance tasks can be performed (Jain et al., 2018). Lopez et al

(2022) further emphasised that maintainability, reliability and efficiency are important

factors that contribute to software quality in the context of agile and rapid development.

Figure 5

Schmidt (2016) proposed dimensions of performance.

Note. Adapted from Agile software development teams: The impact of agile development on team performance

(p. 93), by C. Schmidt, 2016, Springer. © 2016 Springer.

2.4.3 Evolution of scrum
Scrum serves as a base for many of the scaled agile frameworks as shown in Table 1

(Breyter, 2022). The Scrum method was originally designed for smaller teams and has

gone through evolutions for larger scale applications in organisations and projects resulting

in new frameworks such as the Large-scale Scrum (LeSS), the Scaled Agile Framework
(SAFe) and the Spotify Method (Uludag et al., 2021). The concept of ‘scrum of scrums’ is

a key feature of LeSS, in which a team consisting of the area scrum master's and area

product owners of individual scrum teams working on a larger goal or product is formed

(Bass, 2022). In addition to that, new roles and teams are introduced to assist with the

coordination between the business and technical sides such as the Governor and Product

Manager for LeSS (Bass, 2022), and the Release Train Engineer and Portfolio teams for

SAFe (Putta et al., 2018).

 12

Table 1

Scaled Agile Frameworks (Breyter, 2022)

Type and size of the
organization

Methods and
practices
adopted

Specifies
portfolio
management
and business
prioritization

Establishes a
collaborative
dependency
management
mechanism

Professional
association that
endorsed the
framework

Scaled Agile
Framework (SAFe)

50–124 people in an
Agile Release Train,
scaling indefinitely

Scrum, Kanban,
Lean, DevOps, XP
Practices

In detail: Lean
portfolio
management and
business
prioritization based
on Value Stream
Mapping (VSM)

Advanced
dependency
management
starting with long-
term planning

Scaled Agile
Academy

Large-Scale Scrum
(LeSS)

LeSS Huge allowed
for thousands of
people

Scrum primarily By scaling product
management

Via structured
ongoing
collaboration

LeSS practitioner
groups

Disciplined Agile
Delivery (DAD)

200 people or more Full toolbox:
Scrum, Agile
modelling, Unified
Process, XP,
TDD, Agile

Focuses on
technical practices

Via collaboration Project
Management
Institute

Spotify Scaling
Model

Around 300 people Allows the team to
choose any Agile
framework

Via Tribe-specific
accountability and
the role of product
management

Organic N/A

Scrum@Scale No limitations
imposed; successes
limited to several
hundred

Scrum Product Owner
collaboration

Via Scrum of
Scrums

Agile Alliance

Nexus Three to nine Scrum
teams

Scrum Product Owner
collaboration

Advanced
dependency
management via
Integration Team

Scrum Alliance

Note. Adapted from Agile product and project management: A step-by-step guide to building the right products right (p.

255 – p. 256), by M. Breyter, 2022, Apress. © 2022 Apress.

2.6 Implications of LCNC platforms on Agile methods

Rokis and Kirikova (2022) found that the principles of agile methods are compatible with

the essence of LCNC development. Integrating low-code/no-code (LCNC) with Agile

methodologies enhances efficiency and adaptability for businesses (Hanson, 2024).

Combining Low-code/no-code development (LCNC) and Agile methodologies like Scrum
can significantly accelerate application development while enhancing an organization’s

efficiency, quality, and speed, thus leading to success (Abdul Razak et al., 2024). In a study

by Lebens and Finnegan (2021), LCNC platforms is proven to be a useful tool to teach

university students agile methods. Kalaivani et al. (2024) found that Agile methods are

 13

useful as a project management tool when developing a healthcare application with a low-

code/no-code platform. The roles in agile team would be even more dynamic and cross-

functional with LCNC development (Elshan et al., 2024). Product owners must adapt to the

faster software development cycles (Elshan et al., 2024). To study the impact of LCNC

development on Agile methods, it is useful to draw parallels between the findings of existing

literature with some of the twelve principles of Agile.

Maintaining simplicity by reducing complexities in both processes and the actual software

product itself is a key principle of Agile Manifesto (Agile Alliance, n.d). LCNC platforms

simplify the complex process of conventional coding (Käss et al., 2022), enabling users to

streamline workflows and accelerate the software development process (Picek, 2023)

Collaboration between businesspeople and developers is another driving principle behind

the Agile Manifesto (Agile Alliance n.d). The use of LCNC platforms in developing software

applications promotes collaboration between IT and business teams (Tang, 2022),

streamlining Agile development workflows (Appian Corporation, 2019). Making software
development more accessible through LCNC platforms fosters collaboration across

departments, driving innovation by reducing the burden on dedicated IT teams and thus

accelerating the development process (Ramesh and Divya, 2024). LCNC platforms

empower business users to create applications with lesser dependence from dedicated IT

specialists, thus minimising workload (Käss et al., 2023; Matook et al., 2025). In short,

LCNC development unites business and technology as it aligns with the principles of agile

(Tang, 2021).

Keeping customers satisfied by incrementally delivering useable software products early

and consistently with speed and frequency are the principles behind Agile Manifesto (Agile

Alliance, n.d). Low-code/no-code platforms align well with Agile methodology, as iterative

development and frequent delivery is prioritized (Razak et al., 2024). Low-code

development enables rapid prototyping and development of products, allowing developers

to assess customer needs and validate ideas before allocating resources to product

features that may hold little value (Sanchis et al, 2020). Being flexible with changing
requirements from customers is one of the principles of Agile (Agile Alliance n.d). Low-code

platforms enable developers to adapt to changing requirements as they are able modify

applications in response to evolving processes and requirements, incorporating user

feedback for continuous improvement faster (Wolff, 2019). Since developers can work

rapidly on iterations based on feedback, this can reduce requirement inconsistencies

(Alamin et al.,2023). The LCNC development approach is more agile compared to

conventional approach as developers are dealing less with complicated code (Shridhar and

Bose, 2021). Hence adopting the LCNC approach will improve customer satisfaction (Rokis
and Kirikova, 2022).

 14

However, it has also been reported that LCNC development may pose some challenges in

Agile teams. Conflicts between business users and IT teams over control and governance

may happen in LCNC development, thus hindering Agile collaboration (Khalajzadeh and

Grundy, 2025). Utilizing low-code and no-code tools could result in reduced control over

security and governance (Waqas et al., 2024). Thus, a unified IT strategy and governance

framework is essential to resolve such issues (Ajimati et al., 2025).

 15

3 Research Methodology

While there has been multiple research that focuses on LCNC development and Agile

methods individually, there has been limited studies on how both concepts impact and

interact with each other. This qualitative study aims to address that gap by studying the

impact of LCNC approaches on agile development teams through interviews with

practitioners and relevant industry experts. The following research question formulated

below must be answered to study the organisational impact of LCNC on agile development

teams:

RQ1: How does the use of Low-code/No-code platforms impact Agile development

teams?

To analyse how the use of LCNC platforms impact Agile development teams, performance

and team dynamics are two overarching factors that needs to be investigated. To assess

the impact of LCNC on team performance, this research will use only the statistically

significant dimensions of Agile team performance that was proposed by Schmidt (2016).
Therefore, software quality, progress and transparency are used to assess the impact of

LCNC on team performance. To assess the impact of LCNC on team dynamics, the

changes in team roles, working style, and working processes resulted by the use of LCNC

platforms will be investigated. Of all the existing Agile frameworks, only Scrum will be

considered in this research as it is the most prevalent and widely used framework in

practice. Such consideration is made because Scrum is the basis for many of the scaled

frameworks as reported by Breyter (2022).

Figure 6

UML use-case goal diagram of research

 16

3.1 Interview Design

The interviews follow a realist ontology with a neo-positivism epistemology approach with

the following research objectives that will answer the research question:

1. Investigate the effect of LCNC approach on team performance with software
quality, progress, and transparency as metrics.

2. Investigate the possible changes in team dynamics in terms of roles, working style,

and working processes caused by the adaptation of LCNC approach.

The interviews are semi-structured and exploratory with questions that covers the two

overarching factors that determine the impact of LCNC on Agile development teams.

Respondents are selected through non-probability sampling, specifically with purposive

sampling based on relevance to the research topic. Interviewees are chosen through
personal network connections and LinkedIn based on two main criterions. Firstly, their

professional experience in the area of LCNC. This can be employees of LCNC platform

vendors and external consultants or persons who are users of the platforms. Secondly,

their familiarity with Agile frameworks. Ideally, the interviewee should have a professional

Agile certification, however, the minimum is that they should be at least exposed to the

Agile working environment sometime in their career. Appendix 1 lists the relevant

background information of all interviewees. Table 2 below describes the interview

questions related to background that are asked in the beginning followed by table 3 where
the questions pertaining to the dimensions that the overarching factors depend on are

listed.

Table 2

Introduction Questions

No. Question

1

Please introduce yourself.

2

Briefly explain your working experience.

3

Which agile framework are you most familiar with?

4

Which LCNC platform are you familiar with?

 17

Table 3

Interview Questions

Factor Dimension Question

Performance

Software Quality

How does LCNC affect the team’s defect rate per sprint and what evidence links

any observed increase or decrease directly to the LCNC implementation?

Software Quality On a scale of 1 (very low) to 7 (very high), how would you rate the maintainability of

LCNC deliverables compared to traditional code? Please explain the rationale

behind your rating with a recent example.

Performance Transparency

(Internal

Communication)

On 1 (very difficult) to 7 (very easy), how smooth is cross-member coordination

when working with LCNC platforms? Can you illustrate a recent example?

Transparency

(External

Communication)

On 1 (slow/infrequent) to 7 (rapid/frequent), how would you rate the pace of

stakeholder feedback when delivering work made with LCNC development? Please

explain the rationale behind your rating.

Performance Progress

How has adopting LCNC shifted your team’s actual burndown line relative to the

ideal trajectory—indicating overall acceleration or deceleration of work—and what

project-level observations support that pattern?

 Progress How can the adoption of LCNC impact the cycle time and lead time? Can you

provide a reason or an example behind your answer?

Team
Dynamics

Changes in

Roles

How has adopting LCNC influenced the composition and number of roles on

development teams—specifically, which new LCNC-oriented roles have emerged,

and which traditional scrum/agile roles have diminished—and can you illustrate

these shifts with concrete examples and use cases?

 Changes in

Roles

How has adopting LCNC shifted the hands-on responsibilities of product owners—

specifically, have they taken on more configuration or design work—and can you

illustrate that change with a concrete use-case or example?

Team
Dynamics

Changes in

working style

How has LCNC adoption affected the coordination and facilitation duties of the

Scrum master, and can you share a real project scenario that demonstrates the

change?

 Changes in

working style

How has LCNC adoption changed your backlog prioritisation process, and can you

share a specific example where LCNC led you to reprioritise an item?

Team
Dynamics

Impact of Gen AI How would the emergence of generative AI impact LCNC approach and Agile

altogether?

 18

3.2 Interview Participants Selection

Table 4 below lists the eight interview participants who agreed to participate in this

research. A total of 80 people were approached on LinkedIn Sales Navigator. For this

research multiple search queries with the terms “Agile”, “Scrum” and the respective and
relevant LCNC platforms were executed. Prospects are screened and selected carefully

based on the criterion in § 3.1 by analysing their job position and experience, certifications

and skills listed on the individual profile page. An invitation message was then sent to

prospects who pass the screening process. In addition to that, personal connections and

referrals were used to approach some of the participants. In the end, only nine prospects

responded positively, of which only eight managed to successfully do the interview. Only

one out of the eight respondents chose to remain anonymous. All eight interview

participants indicated that scrum is the main methodology that they are most familiar with.

Table 4

Interview Participants

Name Job Experience LCNC Platform Experience

Miguel Baltazar

VP Developers, OutSystems

OutSystems

Dennis
Cardinaels

Tech Lead Capgemini Belgium Outsystems

Metin Ferati

Founder, N’Katrori & Freelance Senior
developer

Wordpress, Replit, V0 by Vercel, Cursor

Prof. Malgorzata
Pankowska

Professor, University of Economics
Katowice

WebCon

Charlie Jessop Solution Architect, Capgemini Belgium Outsystems

Anonymised
participant

Software Developer in Latvia Microsoft Power Apps

Oubaida Ben
Yaacoub

Freelance Business Analyst/Product Owner Microsoft Power Apps

Mario Cunha Tech Lead, OutSystems Outsystems, Mendix

3.3 Data Collection and Analysis

The interview data collection was done fully online through Microsoft Teams over a period

of one month between July and August 2025. All participants have given their consent for

the interview to be recorded and transcribed. After transcription is done, thematic coding
analysis was performed. Table 4 shows the main themes that was identified from all the

interviews and description of the Appendix 1 to Appendix 8 is the transcripts for the eight

 19

interviewees above. The full excel sheet that contains the main themes, child themes and

excerpts can be accessed in the drive link in Appendix 9.

Table 5

Thematic Codes

Theme Description

Software Quality &
Maintainability

Covers defect rates, error types, governance issues, platform limitations, and
ease/difficulty of maintaining LCNC deliverables.

Communication &
Collaboration

Covers cross-member communication, stakeholder feedback loops, citizen
developer interactions.

Delivery Speed & Workflow
Efficiency

Covers delivery pace, quick wins, and changes in backlog prioritization due
to LCNC.

Role & Responsibility
Changes

Covers shifts in Product Owner responsibilities, Scrum Master, developer
roles, hybrid positions and responsibilities.

AI Integration in LCNC Covers use of AI tools in LCNC development, AI-assisted coding,
Automation, perceived future impact.

3.3.1 Building a Transcriber Web App with LCNC

A custom web-based transcription application was developed using a combination of low-

code, and no-code tools to facilitate the transcription and analysis of qualitative interview
data for this study. The application was designed to transcribe the eight interviews

conducted with participants. The front end was made entirely through prompting with

Anthropic’s Claude Code command line interface (CLI) that was installed locally running

Claude AI’s Opus 4 large language model (LLM). The backend was developed and

deployed using n8n, a low-code workflow automation platform, enabling seamless

integration between the application’s frontend, OpenAI’s GPT-4 transcription LLM and

Google Docs.

AI-powered transcription was employed to reduce the time and manual effort required for

converting audio data into text while maintaining a high degree of accuracy. The application

was created to improve efficiency in processing large volumes of qualitative data and to
demonstrate the applicability of low-code/no-code platforms in practical research

scenarios, consistent with the study’s focus on their impact within Agile development

environments.

 20

3.3.1.1 Build Process of Transcriber Web App

The application was designed with a workflow in which the frontend enables the upload of

interview recordings through a dedicated form. The form graphical user interface (GUI) was

coded in HTML with CSS styles applied and AJAX enabled. Upon upload and submission,

the data from the upload form is captured via a webhook, which initiates the backend
processing. This data is transmitted to an n8n development server, where it is routed to the

OpenAI integration node through an API connection. The integration with OpenAI’s GPT-4

transcription model facilitates the automated transcription of the uploaded audio or video

files albeit with an upload limit of 25 Megabytes per file. As a result of that limitation, the

interview videos were converted to a low bitrate .mp3 file with Adobe Audition. Following

the Open AI transcription, a respond-webhook node is triggered to confirm the successful

execution of the process. Simultaneously, another node within the workflow appends the

transcribed text to a designated Google Docs file, ensuring that all interview data is
consolidated in a single document for analysis. This was made possible by connecting

Google’s API key with n8n.

3.3.1.2 Using the Transcriber Web App

This workflow was iteratively applied for all eight interviews, with each transcription

appended sequentially to the same document on Google Docs. The entire process was

configured and optimized within the low-code environment of n8n, leveraging its modular

node-based automation capabilities. Current development efforts are focused on

expanding the application’s functionality to include the ability to export transcriptions

directly as Microsoft Word documents, thereby enhancing its usability for qualitative
research documentation and deploying the app with Railway. Future development efforts

could include the addition of another AI node which would be able to re-check and edit the

transcription for mistakes through context and even generate a short summary of

transcripts.

Figure 7 shows the n8n workflow. Figure 8 and 9 show the simple HTML frontend coded

by Claude Opus 4 model. The time taken to build the prototype of the app was roughly

about 3 hours with significant amount of time taken to familiarise with n8n, given no prior

experience with the platform, and to troubleshoot API connectivity issues of nodes.

OpenAI’s Chatgpt 5 was additionally utilised to consult when troubleshooting issues. The

development cost incurred specifically for this prototype app in terms of API usage and
platform usage totalled up to less than 5 dollars, excluding the overhead costs of n8n and

Claude AI licences.

 21

Figure 7

n8n workflow

Figure 8

Frontend GUI form

Figure 9

Frontend GUI form upon submission

 22

4 Discussion

In this section, each thematic area listed in Table 5 identified through the analysis of

interview data will be examined in detail, comparing the empirical findings with existing

literature and theoretical frameworks. The analysis of interview data revealed five main

thematic areas that characterize the impact of LCNC on Agile teams: software quality and
maintainability, communication and collaboration, delivery speed and workflow efficiency,

role and responsibility changes, and the emerging influence of AI integration. These

themes align with and extend Schmidt's (2016) performance dimensions framework, while

revealing nuanced effects that vary significantly based on project complexity, team

maturity, and organizational context.

4.1 Software Quality & Maintainability

Defects to a software can be used to determine the quality of the end-product. Defects can

appear because of developer error or in the case of LCNC approach, because of the

platform. Defects essentially creates more work for the Agile team and its accumulation in

the subsequent Sprint backlog could lead eventually delays in the overall project, which will

reflect in a burndown line going above the ideal trajectory. Based on the interview data

analysis, it can be concluded that LCNC approach will result in a lower defect rate to a
limited extent. Defects related to frontend and syntax can decrease because of LCNC

(Ferati, personal communication, 2025; Anonymous Participant, personal communication,

2025; Baltazar, personal communication, 2025), however the defect rate is very much still

highly dependent on the skill level of developer and/or developing team themselves and

the platform itself (Cunha, personal communication, 2025; Anonymous Participant,

personal communication, 2025; Ferati, personal communication, 2025; Jessop, personal

communication, 2025). Rectifying or fixing a defect can be much faster with LCNC

compared to traditional development approach (Jessop, 2025; Anonymous Participant,
2025; Cunha, 2025).

Maintainability among other things define software quality (Kanellopoulos & Yu, 2015;

Lopez et al., 2022). In this research, interviewees were asked to rate the maintainability

from one to seven with one being low and seven being high. The term maintainability must

not be conflated with maintenance. Interviewees were made clear beforehand that high

maintainability in this research context means that the end software is easier to maintain
(vis-à-vis low maintenance) with LCNC approach. Majority of the respondents indicated

that software made with LCNC is generally easier to maintain, thus high maintainability.

 23

However, vendor lock in issue and platform limitations may be a hindering issue when it

comes to maintainability especially with more customised software (Anonymous

Participant, personal communication, 2025). High overhead costs may also affect

maintainability from a financial standpoint (Jessop, personal communication, 2025).

4.2 Communication & Collaboration

Transparency, as reported by Schmidt (2016), relies on internal and external

communication, and affects the team performance. Majority of the respondents indicated

that LCNC has a positive effect in external communications with stakeholders as they can

deliver iterations at a faster speed with LCNC. This can also be attributed to the citizen

development phenomenon where non-technical stakeholders are able to contribute to the

development process (Anonymous Participant, personal communication, 2025).

In terms of internal communications between cross members however, respondents have

mixed perceptions. Respondents with a strong background in traditional approach (Ferati,

personal communication, 2025; Jessop, personal communication, 2025) gave lower

ratings. The lack of version control features in LCNC platforms makes internal

communication worse than traditional approaches (Jessop, 2025) and that the inclusion of

citizen developers may affect internal communication negatively if citizen developers lack

technical skills (Ferati, 2025). Respondents also shared that teams tend to be a lot smaller
in LCNC projects, therefore streamlining internal communications (Ben Yaacoub, personal

communication, 2025; Baltazar, personal communication, 2025).

4.3 Delivery Speed & Workflow Efficiency

Previous literatures have stated that combining LCNC with agile will accelerate project
delivery (Razak et al., 2024; Picek, 2023) as developers are able to work more efficiently

(Sanchis et al, 2020). As demonstrated in § 3.3.1 and stated by a respondent (Ben

Yaacoub, personal communication, 2025), developers using LCNC approaches can deliver

a minimum viable product faster as LCNC solutions make it easier for them to develop

applications. While most respondents agree that teams can work faster and deliver

iterations at a rapid rate with LCNC approaches compared to traditional approaches

reflected through the positive response on lead and cycle times, many have mixed

reactions when asked about the overall progress and time taken to complete and deliver
the entire agile project.

 24

Overall progress can be measured by the burndown line - a line that is below the ideal

trajectory means an acceleration of work, whereby one that is above means a deceleration

of work. Respondents indicated that there are other variables in play that will affect the

acceleration and deceleration of the project delivery. With LCNC approaches, developers

can work more efficient at a faster rate (Cardinaels, personal communication, 2025; Cunha,

personal communication, 2025; Baltazar, personal communication, 2025; Jessop, personal

communication, 2025), however bottlenecks may appear at other stages of the project and
requirements may change, thus, slowing down progress (Cardinaels, personal

communication, 2025; Baltazar, personal communication, 2025). The accelerating factor

attributed to the use of LCNC may also be diminished when the project is more complex

(Jessop, personal communication, 2025; Cunha, personal communication, 2025;

Pankowska, personal communication, 2025).

4.4 Role & Responsibility Changes

Self-organising and cross functional team roles are one of the features of Agile

development teams (Bass, 2022). LCNC platforms have given rise to the citizen

development phenomenon, where people with none or limited technical knowledge are

able to build digital products (Hoogsteen and Borgman, 2022). The opposite could be true

as well - with LCNC, professional developers can now also become business owners or be

more involved in other business processes (Ferati, personal communication, 2025;

Baltazar, personal communication, 2025) because of efficiency gains (Cunha, personal
communication, 2025).

The work responsibilities of UI/UX designers can be absorbed by developers (Jessop,

personal communication, 2025) and designers can become citizen developers with LCNC

(Ferati, personal communication, 2025). In addition to that, a respondent observed that

there are lesser product testers in agile development teams adopting LCNC (Jessop,

personal communication, 2025). Teams are observed to be smaller as team members often
take multiple roles (Ben Yaacoub, personal communication, 2025; Baltazar, personal

communication, 2025; Cardinaels, personal communication, 2025). However, the

combining of roles may also lead to communication issues and that citizen development

may not be appropriate for bigger enterprise projects (Cunha, personal communication,

2025).

The role of product owners could get more technical as LCNC is less complicated than

traditional software development approaches (Ferati, personal communication, 2025; Ben
Yaacoub, personal communication, 2025). LCNC approach makes it easier for product

 25

owner to organise their backlog and user stories (Ben Yaacoub, personal communication,

2025; Anonymous Participant personal communication, 2025). Scrum masters could be

able to take on more than one project and have multiple development teams with LCNC as

their work becomes easier with LCNC especially with certain LCNC platforms such as

OutSystems which are designed with Agile in mind (Jessop, personal communication,

2025; Ben Yaacoub, personal communication, 2025; Baltazar, personal communication,

2025; Cunha, personal communication, 2025). With LCNC and Scrum, the role of business
analyst can be combined with either the product owner or scrum master (Ben Yaacoub,

personal communication, 2025; Cardinaels, personal communication, 2025). With roles

being combined, organisations could possibly be saving costs on human resources. This

finding aligns with Khalajzadeh and Grundy (2025) proposition where low-code/no-code

(LCNC) solutions enhance the firm’s business agility as it mitigates developer shortages

by minimizing dependencies with dedicated IT professionals.

4.5 AI Integration in LCNC

With the emergence of generative AI, it makes it even easier for one to build digital

products. The interviews conducted for this thesis tries to explore how AI plays a role in the

impact of LCNC on scrum given the limited research resources regarding the use of AI in

LCNC development (Kandaurova, 2024). AI models such as the one used in § 3.3.1 which

can be installed locally and operated with CLI are able to generate a software practically

with almost zero coding knowledge. Not only it is able to build and develop something from
scratch but is able to debug and troubleshoot itself. The models can code and develop

software faster and may pose as a competition to LCNC vendors if not adopted (Jessop,

personal communication, 2025).

LCNC platforms should be the enabler of AI-use by making it easier for developers to

integrate AI agents in the application for end users (Baltazar, personal communication,

2025). As shown in the transcriber web app build in § 3.3.1 and mentioned by Ferati
(personal connection, 2025), it is possible to have AI powered automation with LCNC

approaches. AI would be a good addition to LCNC as a copilot and as a decision support

assistant, thus making the work of the developer even easier, increasing their productivity

and accelerating the delivery even more than the current rate with LCNC solutions (Ferati,

personal communication, 2025; Anonymous Participant, personal communication, 2025;

Cunha, personal communication, 2025; Pankowska, personal communication, 2025;

Baltazar, personal communication, 2025).

 26

5 Conclusion

This research set out to answer the fundamental question:

How does the use of Low-Code/No-Code platforms impact Agile development
teams?

By adapting Schmidt's (2016) agile performance dimensions framework to LCNC contexts,

the study validates the continued relevance of software quality, transparency, and progress

as key performance indicators of agile teams while revealing how these dimensions

manifest differently in LCNC environments.

Through comprehensive analysis of interview data from eight practitioners across various

LCNC platforms and organizational contexts, several key insights have emerged that
contribute to the current research landscape of LCNC, citizen development and agile.

LCNC platforms demonstrate a generally positive impact on software quality through

reduced frontend defects and improved maintainability, though this benefit is depends on

management processes, business context and complexity of project.

With regards to transparency, communication and collaboration patterns reveal a divergent

impact between internal and external stakeholder interactions. External communication

with stakeholders may be significantly improved. This improvement is attributed to faster
iteration delivery and the ability for non-technical stakeholders to participate directly in the

development process through citizen development. However, internal team communication

presents a more conflicting picture. While smaller team sizes can enhance communication

efficiency, LCNC platform limitations such as limited version control capabilities and

platform specific features can create new communication barriers.

With LCNC, there is bound to be a fundamental restructuring of traditional Agile roles.
Teams operating with LCNC platforms tend to be significantly smaller, with members

assuming hybrid responsibilities. The consolidation of traditional roles like UI/UX designers

into developer responsibilities, and business analysts’ roles with scrum master's or product

owners’ responsibilities because of LCNC adoption represents a shift toward even more

cross-functional team structures that align with Agile principles.

While LCNC platforms can accelerate development and improve workflow especially for

simpler applications, this advantage diminishes with project complexity. As Miguel Baltazar
noted, the removal of development bottlenecks through LCNC causes bottlenecks to shift

 27

to other areas in a project thus necessitating a holistic adoption of Agile methods rather

than simply adopting LCNC tools. This research provides initial evidence that LCNC

platforms, when properly implemented within appropriate contexts, can enhance Agile

team performance and enable new forms of cross-functional collaboration.

With generative AI, it is even easier to develop applications with the LCNC approach as

shown in § 3.3.1, thus making the job of the developer easier. This could potentially result
in developers being more efficient and productive. By combining AI and LCNC approaches

with Agile, the delivery of a digital product could be accelerated even further. In addition to

that, software made with LCNC have the possibility of AI agents enabling automation of

certain processes.

While this study tries to be as representative as possible by interviewing developers, LCNC

vendors, academics and business analysts, this study's limitations include its reliance on

purposive and snowball sampling, focus solely on Scrum framework, and the absence of
quantitative data. The relatively small sample size of eight participants, while providing rich

qualitative insights, limits empirical proof. This study could merely serve as a proof of

concept for further empirical research on the interplay between LCNC, Agile and Artificial

Intelligence.

 28

6 References

Agile Alliance. (n.d.). Principles behind the Agile Manifesto. Agile
Manifesto. https://agilemanifesto.org/principles.html

Alamin, M. A. A., Uddin, G., Malakar, S., Afroz, S., Haider, T., & Iqbal, A. (2023). Developer
discussion topics on the adoption and barriers of low code software development
platforms. Empirical Software Engineering : An International Journal, 28(1), 4–4.
https://doi.org/10.1007/s10664-022-10244-0

Almeida, F., & Carneiro, P. (2023). Perceived Importance of Metrics for Agile Scrum Environments.
Information (Basel), 14(6), Article 327. https://doi.org/10.3390/info14060327

Aksenova, Z. A., Yashin, S. N., Markova, O. M., Chudaeva, A. A., & Alieva, P. R. (2024). Assessing
the Impact of Digital Economy Programs on Alleviating Skill Shortages in the EU Labor Market for
Digital Professionals. Journal of the Knowledge Economy. https://doi.org/10.1007/s13132-024-
02202-6

Alt, R., Leimeister, J. M., Priemuth, T., Sachse, S., Urbach, N., & Wunderlich, N. (2020). Software-
Defined Business: Implications for IT Management. Business & Information Systems
Engineering, 62(6), 609–621. https://doi.org/10.1007/s12599-020-00669-6

Al-Zewairi, M., Biltawi, M., Etaiwi, W., & Shaout, A. (2018). Agile Software Development
Methodologies: Survey of Surveys. Estonian Journal of Earth Sciences, 67(3), 74-.
https://doi.org/10.4236/jcc.2017.55007

Ajimati, M. O., Carroll, N., & Maher, M. (2025). Adoption of low-code and no-code development: A
systematic literature review and future research agenda. The Journal of Systems and Software,
222, 112300-. https://doi.org/10.1016/j.jss.2024.112300

Ang, R. J. (2021). Building Applications Using Low-Code and No-Code Platforms. Canadian
Journal of Nursing Informatics, 16(3/4).

Appian Corporation. (2019, April 2). Independent study: 84% of firms with highest enterprise
requirements use low-code development and see return-on-investment [Press release].
https://www.appian.com/news/news-item/independent-study-84-of-firms-with-highest-enterprise-
requirements-use-low-code-development-and-see-return-on-investment/

Babaian, A. (2019). Becoming Agile with the Scrum Framework. Software Quality Professional,
22(1), 23–33.

Barkin, I., & Davenport, T. H. (2023). Harnessing grassroots automation. MIT Sloan Management
Review, 65(1), 74-78. Retrieved from https://kuleuven.e-bronnen.be/scholarly-journals/harnessing-
grassroots-automation/docview/2954922318/se-2

Bass, J. M. (2022). Agile software engineering skills. Springer Nature Switzerland
AG. https://doi.org/10.1007/978-3-031-05469-3

Behutiye, W. N., Rodríguez, P., Oivo, M., & Tosun, A. (2017). Analyzing the concept of technical
debt in the context of agile software development: A systematic literature review. Information and
Software Technology, 82, 139–158. https://doi.org/10.1016/j.infsof.2016.10.004

Bhattacharyya, S. S., & Kumar, S. (2023). Study of deployment of “low code no code” applications
toward improving digitization of supply chain management. Journal of Science and Technology
Policy Management, 14(2), 271–287. https://doi.org/10.1108/JSTPM-06-2021-0084

Bibik, I. (2018). How to kill the Scrum monster: Quick start to Agile Scrum methodology and the
Scrum Master role. Apress. https://doi.org/10.1007/978-1-4842-3691-8

Bock, A. C., & Frank, U. (2021). Low-Code Platform. Business & Information Systems
Engineering, 63(6), 733–740. https://doi.org/10.1007/s12599-021-00726-8

 29

Breyter, M. (2022). Agile product and project management: A step-by-step guide to building the
right products right. Apress. https://doi.org/10.1007/978-1-4842-8200-7

Callinan, N., & Perry, M. (2024). Critical Success Factors for Citizen Development. Open Journal of
Applied Sciences, 14(4), 1121-1149.

Cassell, C. (2015). Conducting research interviews for business and management students. SAGE.
Chen, W.-E., Lin, Y.-B., Yen, T.-H., Peng, S.-R., & Lin, Y.-W. (2022). DeviceTalk: A No-Code Low-
Code IoT Device Code Generation. Sensors (Basel, Switzerland), 22(13), 4942-.
https://doi.org/10.3390/s22134942

Dushnitsky, G., & Stroube, B. K. (2021). Low-code entrepreneurship: Shopify and the alternative
path to growth. Journal of Business Venturing Insights, 16, e00251-.
https://doi.org/10.1016/j.jbvi.2021.e00251

Edison, H., Wang, X., & Conboy, K. (2022). Comparing Methods for Large-Scale Agile Software
Development: A Systematic Literature Review. IEEE Transactions on Software Engineering, 48(8),
2709–2731. https://doi.org/10.1109/TSE.2021.3069039

Elshan, E., Binzer, B., & Winkler, T. J. (2025). From Software Users to Software Creators: An
Exploration of the Core Characteristics of the Citizen Developer Role and the Related Re- and
Upskilling Programs: From Software Users to Software Creators. Business & Information Systems
Engineering, 67(1), 31–53. https://doi.org/10.1007/s12599-024-00915-1

Fikri, H. (2025). Interview transcripts: Low-code/no-code impact on agile teams [Unpublished raw
data]

Fikri, H. (2025). Thematic coding analysis of LCNC interviews [Unpublished raw data].

Golov, R. S., & Myl’nik, A. V. (2023). Low-Code and No-Code Technologies in Designing Digital
Infrastructure for High-Tech Enterprises. Russian Engineering Research, 43(3), 334–335.
https://doi.org/10.3103/S1068798X2304010X

Guthardt, T., Kosiol, J., & Hohlfeld, O. (2024). Low-code vs. the developer: An empirical study on
the developer experience and efficiency of a no-code platform. Proceedings of the ACM/IEEE 27th
International Conference on Model Driven Engineering Languages and Systems, 856–865.
https://doi.org/10.1145/3652620.3688332

Hagel, N., Hili, N., & Schwab, D. (2024). Turning Low-Code Development Platforms into True No-
Code with LLMs. MODELS Companion ’24 Proceedings, 876–885.
https://doi.org/10.1145/3652620.3688334

Hanson, K. (2024). Beyond Lean. Manufacturing Engineering, 173(5), 32–39.

Havelund, K., Steffen, B., & Margaria, T. (2021). Programming: What is Next. In Leveraging
Applications of Formal Methods, Verification and Validation (Vol. 13036, pp. 195–201). Springer
International Publishing AG. https://doi.org/10.1007/978-3-030-89159-6_13

Hoogsteen, D., & Borgman, H. (2022). Empower the workforce, empower the company? Citizen
development adoption.

How No-Code/Low-Code Solutions Help IT Organizations Evolve. (2023). Cio, https://kuleuven.e-
bronnen.be/trade-journals/how-no-code-low-solutions-help-organizations/docview/2763221844/se-2

Hurlburt, G. (2021). Low-Code, No-Code, What’s Under the Hood? IT Professional, 23(6), 4–7.
https://doi.org/10.1109/MITP.2021.3123415

Jaglan, N., Upadhyay, D., Bhattacharya, A., Dutta, S., Piuri, V., & Dutta, P. (2023). Decoding Low-
Code/No-Code Development Hype—Study of Rapid Application Development Worthiness
and Overview of Various Platforms. In Innovations in Data Analytics (Vol. 1442, pp. 419–427).
Springer. https://doi.org/10.1007/978-981-99-0550-8_33

 30

Jain, P., Sharma, A., & Ahuja, L. (2018). Software Maintainability Estimation in Agile Software
Development. International Journal of Open Source Software & Processes, 9(4), 65–78.
https://doi.org/10.4018/IJOSSP.2018100104

Kandaurova, M., Skog, D. A., & Bosch-Sijtsema, P. M. (2024). The Promise and Perils of Low-Code
AI Platforms. MIS Quarterly Executive, 23(3), 275-. https://doi.org/10.17705/2msqe.00098

Kanellopoulos, Y., & Yu, Y. (2015). Guest editorial: Special section: Software quality and
maintainability. Software Quality Journal, 23(1), 77–78. https://doi.org/10.1007/s11219-015-9270-x

Kass, S., Strahringer, S., & Westner, M. (2022). Drivers and Inhibitors of Low Code Development
Platform Adoption. 2022 IEEE 24th Conference on Business Informatics (CBI), 1, 196–205.
https://doi.org/10.1109/CBI54897.2022.00028

Kass, S., Strahringer, S., & Westner, M. (2023). Practitioners’ Perceptions on the Adoption of Low
Code Development Platforms. IEEE Access, 11, 1–1.
https://doi.org/10.1109/ACCESS.2023.3258539

Khalajzadeh, H., & Grundy, J. (2025). Accessibility of low-code approaches: A systematic literature
review. Information and Software Technology, 177, 107570-.
https://doi.org/10.1016/j.infsof.2024.107570

Kelly, W., Schröder, J., & Roock, S. (2019). Agile software architecture: Aligning agile processes
and software architectures. Apress. https://doi.org/10.1007/978-1-4842-5168-3

Kirchhof, J. C., Jansen, N., Rumpe, B., & Wortmann, A. (2023). Navigating the Low-Code
Landscape: A Comparison of Development Platforms. 2023 ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems Companion (MODELS-C), 854–862.
https://doi.org/10.1109/MODELS-C59198.2023.00135

Kok, C. L., Tan, H. R., Ho, C. K., Lee, C., Teo, T. H., & Tang, H. (2024). A Comparative Study of AI
and Low-Code Platforms for SMEs: Insights into Microsoft Power Platform, Google AutoML and
Amazon SageMaker. Proceedings (IEEE International Symposium on Embedded
Multicore/Manycore SoCs. Online), 50–53. https://doi.org/10.1109/MCSoC64144.2024.00018

Lebens, M., & Finnegan, R. (2021). Using a Low Code Development Environment to Teach the
Agile Methodology. Lecture Notes in Business Information Processing, 419, 191–199.
https://doi.org/10.1007/978-3-030-78098-2_12

Lethbridge, T. C., Margaria, T., & Steffen, B. (2021). Low-Code Is Often High-Code, So We Must
Design Low-Code Platforms to Enable Proper Software Engineering. In Leveraging Applications of
Formal Methods, Verification and Validation (Vol. 13036, pp. 202–212). Springer International
Publishing AG. https://doi.org/10.1007/978-3-030-89159-6_14

Liu, D., Jiang, H., Guo, S., Chen, Y., & Qiao, L. (2024). What’s Wrong With Low-Code Development
Platforms? An Empirical Study of Low-Code Development Platform Bugs. IEEE Transactions on
Reliability, 73(1), 695–709. https://doi.org/10.1109/TR.2023.3295009

Low Code/No Code Application Development - Opportunity and Challenges for Enterprises. (n.d.).
https://doi.org/10.17762/ijritcc.v10i11.11038

López, L., Burgués, X., Martínez-Fernández, S., Vollmer, A. M., Behutiye, W., Karhapää, P.,
Franch, X., Rodríguez, P., & Oivo, M. (2022). Quality measurement in agile and rapid software
development: A systematic mapping. The Journal of Systems and Software, 186, Article 111187.
https://doi.org/10.1016/j.jss.2021.111187

Luo, Y., Liang, P., Wang, C., Shahin, M., & Zhan, J. (2021). Characteristics and Challenges of Low-
Code Development: The Practitioners’ Perspective. ESEM 2021 - Proceedings of the 15th
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, 1–11.
https://doi.org/10.1145/3475716.3475782

Lutwama, P., Dlulane, M., Pillay, T., Hassan, F. S., & Grobbelaar, S. (2024). AGILE: Advantages,
Disadvantages, Enablers, and Barriers. South African Journal of Industrial Engineering, 35(4), 66–
76. https://doi.org/10.7166/35-4-3058

 31

Maassen, M. A. (2018). Product development models in the IT sector-From Waterfall to Agile
Project Management Model s in the case of AVIRA SOFT S.R.L. Proceedings of the ... International
Conference on Business Excellence, 12(1), 568–578. https://doi.org/10.2478/picbe-2018-0051

Martins, J., Branco, F., & Mamede, H. (2023). Combining low-code development with ChatGPT to
novel no-code approaches: A focus-group study. Intelligent Systems with Applications, 20, 200289-.
https://doi.org/10.1016/j.iswa.2023.200289

Matook, S., Wang, Y. M., & Axelsen, M. (2025). Experiential Learning for Citizen
Developers. Business & Information Systems Engineering, 67(1), 7–30.
https://doi.org/10.1007/s12599-024-00921-3

Matvitskyy, O., Davis, K., & one more. (2024, October 16). Magic Quadrant for Enterprise Low-
Code Application Platforms (ID G00804341). Gartner,
Inc. https://www.gartner.com/doc/reprints?id=1-2J40TC35&ct=241017&st=sb

Maximini, D. (2018). The Scrum Culture: Introducing Agile Methods in Organizations (2nd ed.
2018.). Springer International Publishing AG. https://doi.org/10.1007/978-3-319-73842-0

Noll, J., Razzak, M. A., Bass, J. M., Beecham, S., Winkler, D., Méndez Fernández, D., Sarro, F.,
Turhan, B., Kalinowski, M., & Felderer, M. (2017). A Study of the Scrum Master’s Role. In Product-
Focused Software Process Improvement (Vol. 10611, pp. 307–323). Springer International
Publishing AG. https://doi.org/10.1007/978-3-319-69926-4_22

No-Code, Low-Code Software Comes to HR. (2021). HRNews, https://kuleuven.e-
bronnen.be/trade-journals/no-code-low-software-comes-hr/docview/2516867512/se-2

Papatheocharous, E., & Andreou, A. S. (2014). Empirical evidence and state of practice of software
agile teams. Journal of Software : Evolution and Process, 26(9), 855–866.
https://doi.org/10.1002/smr.1664

Pavlic, L., Hlis, T., Hericko, M., & Beranic, T. (2022). The Gap between the Admitted and the
Measured Technical Debt: An Empirical Study. Applied Sciences, 12(15), 7482-.
https://doi.org/10.3390/app12157482

Phalake, V., Joshi, S., Rade, K., & Phalke, V. (2022). Modernized Application Development Using
Optimized Low Code Platform. 2022 2nd Asian Conference on Innovation in Technology
(ASIANCON), 1–4. https://doi.org/10.1109/ASIANCON55314.2022.9908726

Picek, R. (2023). Low-code/No-code Platforms and Modern ERP Systems. 2023 International
Conference on Information Management (ICIM), 44–49.
https://doi.org/10.1109/ICIM58774.2023.00014

Putta, A., Paasivaara, M., & Lassenius, C. (2018). Adopting scaled agile framework (SAFe): a
multivocal literature review. Proceedings of the 19th International Conference on Agile Software
Development: Companion, 147763, 1–4. https://doi.org/10.1145/3234152.3234164

Prommegger, B., Arshad, D., & Krcmar, H. (2021). Understanding Boundaryless IT Professionals:
An Investigation of Personal Characteristics, Career Mobility, and Career Success. Proceedings of
the 2021 Computers and People Research Conference, 51–59.
https://doi.org/10.1145/3458026.3462162

Razak, S. F. A., Ernn, Y. P., Yussoff, F. I., Bukar, U. A., & Yogarayan, S. (2024). Enhancing
Business Efficiency through Low-Code/No-Code Technology Adoption: Insights from an Extended
UTAUT Model. Journal of Human, Earth, and Future, 5(1), 85–99. https://doi.org/10.28991/HEF-
2024-05-01-07

Rethinking enterprise architects’ roles for agile transformation. (2024). Cio, Retrieved from
https://kuleuven.e-bronnen.be/trade-journals/rethinking-enterprise-architects-roles-
agile/docview/3106294254/se-2

 32

Ramesh, K. R., Divya, P. (2024) Revolutionizing Software Development: the Rise of No Code/low
Code Development Solutions in Digital Era. International Journal For Multidisciplinary Research.
https://doi.org/10.36948/ijfmr.2024.v06i02.16706

Rokis, K., & Kirikova, M. (2023). Exploring Low-Code Development: A Comprehensive Literature
Review. Complex Systems Informatics and Modeling Quarterly, 2023(36), 68–86.
https://doi.org/10.7250/csimq.2023-36.04

Rokis, K., Kirikova, M., Seigerroth, U., Sandkuhl, K., & Nazaruka, Ē. (2022). Challenges of Low-
Code/No-Code Software Development: A Literature Review. In Lecture Notes in Business
Information Processing (Vol. 462, pp. 3–17). Springer International Publishing AG.
https://doi.org/10.1007/978-3-031-16947-2_1

Sahay, A., Indamutsa, A., Di Ruscio, D., & Pierantonio, A. (2020). Supporting the understanding
and comparison of low-code development platforms. 2020 46th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), 171–178.
https://doi.org/10.1109/SEAA51224.2020.00036

Sanchis, R., García-Perales, Ó., Fraile, F., & Poler, R. (2020). Low-code as enabler of digital
transformation in manufacturing industry. Applied Sciences, 10(1), 12-.
https://doi.org/10.3390/app10010012

Schmidt, C. (2016). Agile software development teams: The impact of agile development on team
performance. Springer. https://doi.org/10.1007/978-3-319-26057-0

Schwaber, K., & Sutherland, J. (2020). The Scrum Guide: The definitive guide to Scrum: The rules
of the game. Retrieved from https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-
US.pdf

Shastri, Y., Hoda, R., & Amor, R. (2021). The role of the project manager in agile software
development projects. Journal of Systems and Software, 173, 110871.
https://doi.org/10.1016/j.jss.2020.110871

Stettina, C. J., van Els, V., Croonenberg, J., & Visser, J. (2021, June). The impact of agile
transformations on organizational performance: a survey of teams, programs and portfolios.
In International Conference on Agile Software Development (pp. 86-102). Cham: Springer
International Publishing.

Tal, L. (2015). Agile software development with HP Agile Manager. Apress.
https://doi.org/10.1007/978-1-4842-1035-2

Tang, L. (2022). ERP Low-Code Cloud Development. 2022 IEEE 13th International Conference on
Software Engineering and Service Science (ICSESS), 319–323.
https://doi.org/10.1109/ICSESS54813.2022.9930146

Thesing, T., Feldmann, C., & Burchardt, M. (2021). Agile versus Waterfall Project Management:
Decision Model for Selecting the Appropriate Approach to a Project. Procedia Computer
Science, 181, 746–756. https://doi.org/10.1016/j.procs.2021.01.227

Uludağ, Ö., Putta, A., Paasivaara, M., & Matthes, F. (2021, June). Evolution of the agile scaling
frameworks. In International conference on agile software development (pp. 123-139). Cham:
Springer International Publishing.

Vincent P, Natis Y, Iijima K, Wong J, Ray S, Jain A, Leow A (2020) Magic quadrant for enterprise
low-code application platforms. Gartner Report September 2020, Gartner

Waqas, M., Ali, Z., Sánchez-Gordón, M., Kristiansen, M., Mejía, J., Hernández Pérez, Y., Avila-
George, H., Rocha, A., & Muñoz, M. (2024). Using LowCode and NoCode Tools in DevOps:
A Multivocal Literature Review. In New Perspectives in Software Engineering (Vol. 1135, pp. 71–
87). Springer. https://doi.org/10.1007/978-3-031-50590-4_5

Wolf, T., Schröder, J., & Roock, S. (2019). Agile software architecture: Aligning agile processes and
software architectures. Apress. https://doi.org/10.1007/978-1-4842-5169-0

 33

Wolff, I. (2019). Making In-House Apps with Low-Code, No-Code Platforms. Manufacturing
Engineering, 163(4), 58–67.

Woo, M. (2020). The Rise of No/Low Code Software Development—No Experience Needed?
Engineering (Beijing, China), 6(9), 960–961. https://doi.org/10.1016/j.eng.2020.07.007

Zielinski, D. (2021). No-code, low-code software comes to HR. HRNews. Retrieved
from https://kuleuven.e-bronnen.be/trade-journals/no-code-low-software-comes-
hr/docview/2516867512/se-2

 34

List of figures

FIGURE 1 .. 8

FIGURE 2 .. 8

FIGURE 3 .. 9

FIGURE 4 .. 10

FIGURE 5 .. 11

FIGURE 6 .. 15

FIGURE 7 .. 21

FIGURE 8 .. 21

FIGURE 9 .. 21

 35

List of tables

TABLE 1 .. 12
TABLE 2 .. 16
TABLE 3 .. 17
TABLE 4 .. 18
TABLE 5 .. 19

 36

Appendices

Appendix 1: Link to all research files

https://drive.google.com/drive/folders/1fxKOWZYh472B_adBUxHcKyFizWl_ZDJa?usp=drive_link
Note. All files have been reviewed carefully to ensure anonymity of some research participants.

